

NEW ORLEANS SUMMER CANCER MEETING

EGFR: Common and Uncommon Mutations & What Is Next For This Patient Population?

Edgardo S. Santos, M.D., FACP
Medical Director of Cancer Research
Thoracic and Head and Neck Cancer Programs
Eugene M. & Christine E. Lynn Cancer Institute
Associate Professor of Clinical Biomedical Science
Charles E. Schmidt College of Medicine
Florida Atlantic University
Boca Raton, FL, USA

July 21, 2018

Edgardo S. Santos, M.D., FACP EGFR: Common and Uncommon Mutations & What Is Next For This Patient Population?

Relevant financial relationships in the past twelve months by presenter or spouse/partner.

Speakers Bureau: Genentech, Pfizer, Novartis, Merck, Celgene, Amgen, AstraZeneca, Takeda, Boehringer-Ingelheim

The speaker will directly disclosure the use of products for which are not labeled (e.g., off label use) or if the product is still investigational.

What's New From ASCO 2018, ELCC 2018, AACR 2018, ESIMO 2017 & WCLC 2017?

13th Annual New Orleans Summer Cancer Meeting

"Immunotherapy - Targeted Therapy & Chemotherapy: Breaking the Enigma of Solid & Liquid Cancers"

July 20-22, 2018

THE ROOSEVELT HOTEL New Orleans

Program Chair and Conference Director Edgardo S. Santos, M.D., FACP

Educational Committee

Pasquale W. Benedetto, M.D. • Chancellor Donald, M.D. Dorothy Green • Mark Pegram, M.D. Daniel Petrylak, M.D. • Luis E. Raez, M.D., FACP, FCCP Tom Reske, M.D. . Hope Rugo, M.D. Eduardo Sotomayor, M.D. Adrienne M. Vazquez, MSN, ACNP-BC, AOCN

THE MEDICAL EDUCATOR CONSORTIUM

FLORIDA SOCIETY OF CLINICAL ONCOLOG

LOUISIANA STATE ONCOLOGY SOCIETY

How did we get here?

Osimertinib in previously treated EGFRm

Dabrafenib/tram etinib for BRAF

FDA approves broad genomic testing in solid tumors

Alectinib in ROS1 positive NSCLC

Cri ROS

Since 2015,

there have been ~13 studies that have transformed the management of NSCLC

with targeted therapies or immunotherapies

2018

First anti-PD-1/PD-L1 in previously treated advanced NSCLC CheckMate 017 CheckMate 057

Pembrolizumab monotherapy in 1L PD-L1 high NSCLC KEYNOTE-024

Pembrolizumab + platinum doublet chemotherapy in 1L NSCLC

KEYNOTE-189: Carbo/Pem/Pern For NSq-NSCLC

KEYNOTE-407: Carbo/Paclit or nab-Paclit/Pem For Sq-NSCLC

IMPOWER 150:

Carbo/Paclit/Bev/Atezo For NSq-NSCLC (EGFR+/ALK+)

Survival with the five most frequent oncogenic drivers

Altered Gene	N	Median Survival (95%
EGFR (sensitizing)	140	4.0 years (2.7 to 5.4)
EGFR (other)	50	3.3 years (2.2 to 6.2)
ALK	73	4.3 years (3.0 to NA)
KRAS	231	2.4 years (1.9 to 3.6)
Drivers in Two Genes	32	2.0 years (1.6 to 4.6)

EGFR MUTANT TUMORS

EGFR Sequencing vs Non-Sequencing

WHERE ARE WE RIGHT NOW? For sure... more tx options for patients

- 1) Osimertinib > Gefitinib/Erlotinib (FLAURA study; phase III)
- 2) Afatinib vs Osimertinib? (no data)
- 3) Dacomitinib vs Osimertinib (no data)
- 4) Afatinib > Gefitinib (LUX-Lung 7; phase IIb)
- 5) Dacomitinib > Gefitinib (ARCHER 1050; phase III trial)
- 6) Gefitinib/Carbo/Pem > Gefitinib (NEJ 009; phase III trial)

First phase III trials demonstrating OS benefit in EGFR M+ NSCLC with an EGFR TKI control

	Median OS	95% CI	
Gefitinib	26.8 m	23.7 - 32.1	
Dacomitinib	34.1 m	29.5 - 37.7	
	HR 0.76 (95%CI 0.	HR 0.76 (95%CI 0.582 - 0.993) p=0.0219	

NEJ009 (n=345)
Median f/u minimum 42 m

	Median OS	95% CI
Gefitinib	38.8 m	31.1 - 50.8
Gefitinib + PemCb	52.2 m	44.0 - NR
	HR 0.695 (95%CI 0.520 - 0.927) p=0.013	

Is overall survival benefit still a relevant endpoint?

 Has traditionally been the gold standard endpoint... together with quality of life

- Some commonly cited limitations:
 - Crossover effect
 - Chemotherapy → TKI
 - Long duration of follow up required

- RR & PFS have been an acceptable surrogate endpoint in targeted therapies in NSCLC
 - Threshold of surrogacy is highly context dependent e.g. type of intervention

How does ARCHER 1050 compare with other 1L trials of 2nd & 3rd Gen EGFR TKI

	LUX-Lung 7 ¹	ARCHER 1050 ²	FLAURA ³
Median OS	27.9 m v 24.5 m	34.1 m v 26.8 m	Immature
Phase	IIb (n=319)	III (n=452)	III (n=556)
Arms	Afatinib vs gefitinib	Dacomitinib vs gefitinib	Osimertinib vs gefitinib/erlotinib
RR	70% v 56%	75% v 71.2%	80% v 76%
PFS (all comers)	11 m v 10.9 m (BIRC) HR 0.73 (0.57 - 0.95) p=0.017	14.7 m v 9.2 m (BIRC) [No BM] HR 0.59 (0.47-0.74) p<0.0001	17.7 m v 9.7 m (BIRC) HR 0.45 (0.36 - 0.57) p<0.001
PFS (no brain mets)		16.6 m v 11.0 (INV) HR 0.62 (0.50-0.78) p<0.0001	19.1 m v 10.9 m (INV) HR 0.46 (0.36-0.59) p<0.001

Will sequencing a 3G TKI after failure of dacomitinib > upfront 3G TKI?

Park TLO 2016; Mok ASCO 2018; Soria NEJM 2018

Resistance mechanisms to dacomitinib and subsequent therapy on ARCHER 1050

Are there potential specific patient subsets that might benefit most from a 2nd Gen TKI?

PRESENTED BY: Daniel S.W. Tan, BSc, MBBS, PhD

Yu et al. CCR 2013; Kobayashi JTO 2018

mOS: 34.1 m

The case for chemotherapy in EGFR M+ NSCLC

- Variable proportion of patients crossover from TKI → chemotherapy
 - 28% on TKI arm did not receive subsequent therapy (NEJ002)¹
- 2. EGFR TKI have comparable efficacy regardless in 1st or 2nd line
- 3. Impact of chemotherapy on survival?

Crossover in EGFR M+ phase III trials

As subsequent lines¹

Randomized upfront²

¹Inoue et al. Ann Onc 2012; ²Lee CK JNCI 2017

Would upfront chemotherapy be a solution? NEJ009

80% power to show OS in HR=0.70 at two-sided α =0.05 Hierarchical sequential testing PFS \rightarrow PFS2 \rightarrow OS

So, based on the FLAURA study.....

Should the winner take it all?

PRIMARY ENDPOINT: PFS BY INVESTIGATOR ASSESSMENT

342 events in 556 patients at DCO: 62% maturity; osimertinib: 136 events (49%), SoC: 206 events (74%)

OVERALL SURVIVAL INTERIM ANALYSIS

141 deaths in 556 patients at DCO: 25% maturity; osimertinib: 58 deaths (21%), SoC: 83 deaths (30%)

Always give your best treatments first. Not everyone gets second line treatment

Acquired Resistance to Osimertinib

EGFR TKI

Erlotinib Afatinib Gefitinib

Acquired Resistance

EGFR TKI

Osimertinib

Acquired Resistance #2

EGFR TKI Osimertinib ??

Acquired EGFR mutations Acquired alterations Tumor heterogeneity Histologic transformation

EGFR C797S and other acquired EGFR mutations

- 3rd-generation EGFR TKIs bind at *EGFR* C797. Acquired EGFR C797S induces resistance to osimertinib.
- Small series report prevalence of C797S to be 10-40%
- Other acquired EGFR mutations: G796, L792 (12%, 11/93), L718 (8%, 9/93) seen with osimertinib resistance.

Thress Nat Med 2015, Yu JAMA Onc 2015, Ercan CCR 2015, Bersanelli JTO 2016, Yang CCR 2018, Ou Lung Cancer 2017

Sequencing of EGFR TKIs

Erlotinib/Afatinib/ Gefitinib

Osimertinib

Osimertinib

Sequencing of EGFR TKIs

Erlotinib/Afatinib/ Gefitinib

Osimertinib

Osimertinib

Erlotinib/Afatinib/ Gefitinib

EGFR TKI/EGFR antibody i.e. Afatinib/Cetuximab

EGFR TKI/other targeted therapy combinations

EGFR allosteric inhibitors **EGFR C797S inhibitors**

Sequencing of EGFR TKIs

Erlotinib/Afatinib/ Gefitinib

Osimertinib

Osimertinib

Erlotinib/Afatinib/ Gefitinib

EGFR TKI/EGFR antibody i.e. Afatinib/Cetuximab

EGFR TKI/other targeted therapy combinations

EGFR allosteric inhibitors **EGFR C797S inhibitors**

Osimertinib/EGFR TKI combination

EGFR TKI/other targeted therapy Osimertinib/bevacizumab

Combination treatment - which combos and when?

Osimertinib +/- other drugs is the first-line treatment of choice

At the European Lung Cancer Congress ELCC 2018

May 2018

Optimal sequence for EGFR mutation?

First generation TKI (10 months)

Osimertinib for T790M (10 months)

OS?

Chemo (5 months)

AURA 3

Second generation TKI (14-16 months)

Osimertinib for T790M (10 months)

OS?

Chemo (5 months) **ARCHER 1050**

Osimertinib (19 months)

FLAURA

Cher OS?

Parenthesis...... FINAL RESULTS OF ARCHER 1050 Clinical Trial

ASCO Meeting

June 1-5, 2018

Improvement in Overall Survival in a Randomized Study Comparing Dacomitinib With Gefitinib in Patients With Advanced Non-Small Cell Lung Cancer Harboring *EGFR*-Activating Mutations

Tony S. Mok,¹ Ying Cheng,² Xiandong Zhou,³ Ki Hyeong Lee,⁴ Kazuhiko Nakagawa,⁵ Seiji Niho,⁶ Min Young Lee,⁷ Rolf Linke,⁸ Rafael Rosell,⁹ Jesus Corral,¹⁰ Maria Rita Migliorino,¹¹ Adam Pluzanski,¹² Eric I. Sbar,¹³ Tao Wang,¹⁴ Jane Liang White,¹⁴ Yi-Long Wu¹⁵

¹State Key Laboratory of South China, Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, China; ²Jilin Provincial Cancer Hospital, Changchun, China; ³First Affiliated Hospital of Third Military Medical University, Chongqing, China; ⁴Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea; ⁵Kindai University Hospital, Osaka, Japan; ⁶National Cancer Center Hospital East, Kashiwa, Japan; ⁶SFJ Asia Pacific, Singapore; ⁶SFJ Pharmaceuticals Group, Pleasanton, CA, USA; ⁶Catalan Institute of Oncology, Barcelona, Spain; ¹¹Pulmonary Oncology Unit, San Camillo-Forlanini Hospital, Rome, Italy; ¹²The Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland; ¹³Pfizer Inc., Collegeville, PA, USA; ¹⁴Pfizer Inc., Groton, CT, USA; ¹⁵Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China

ARCHER 1050: Study Design

 Phase 3 randomized open-label study to evaluate dacomitinib as an alternative first-line treatment for patients with advanced NSCLC with an EGFR-activating mutation

- Advanced NSCLC with EGFRactivating mutation(s)
- No prior systemic treatment of advanced NSCLC
- No CNS metastases
- No prior EGFR TKI or other TKI
- ECOG PS of 0 or 1

Primary endpoint

PFS by blinded independent review (IR)

- Target HR ≤0.667 (50%↑)
- 90% power
- 1-sided a = 0.025
- Assumed median PFS: 14.3 vs 9.5 months

Secondary endpoints

OS

PFS (investigator assessed), ORR, DOR, TTF, Safety, PROs

ClinicalTrials.gov: https://clinicaltrials.gov/ct2/show/NCT01774721

CNS, central nervous system; DOR, duration of response; ECOG, Eastern Cooperative Oncology Group; ORR, objective response rate; PO, orally; PROs, patient-reported outcomes; PS, performance status; QD, once daily; R, randomized; TTF, time to treatment failure.

PFS: Blinded Independent Review

(Intention-to-Treat Population)

Final OS (Primary Analysis)

Impact of Subsequent Treatment Analysis^a

Subsequent Treatment ^b	Dacomitinib (n = 227)	Gefitinib (n = 225)
Chemotherapy ^c		
Patients, n (%)	63 (27.8)	80 (35.6)
Deaths, n (%)	35/63 (55.6)	47/80 (58.8)
Median OS, months (95% CI)	29.5 (25.1, 37.7)	24.6 (21.3, 29.1)
Third-generation EGFR TKId		
Patients, n (%)	22 (9.7)	25 (11.1)
Deaths, n (%)	8/22 (36.4))
Median OS, months (95% CI)	36.7 (30.1, NR)	()
Other EGFR TKI ^e		
Patients, n (%)	20 (8.8)	19 (8.4)
Deaths, n (%)	10/20 (50.0)	10/19 (52.6)
Median OS, months (95% CI)	34.7 (15.6, NR)	32.1 (20.5, NR)

These are not predefined and randomized subgroups.

NR not reported

bPatients were censored at first subsequent therapy.

carboplatin/gemcitabine, carboplatin, paclitaxel, bevacizumab (given with chemotherapy), nedaplatin, tegafur/gimeracil/oteracil, vinorelbine, bleomycin, carboplatin/pemetrexed, carboplatin/gemcitabine, capecitabine, cisplatin/paclitaxel, cisplatin/pemetrexed, cis-DDP, custirsen (antisense molecule given with chemotherapy), etoposide, lobaplatin, paclitaxel/carboplatin, temozolomide, thalidomide, methotrexate, "chemotherapeutics," cisplatin/gemcitabine, docetaxel, gemcitabine, TAS-102 (oral thymidine-based nucleic acid analog and a thymidine phosphorylase inhibitor) and irinotecan hydrochloride hydrate.

Includes osimertinib (AZD9291), olmutinib (HM61713), rociletinib (CO-1686), avitinib (AC0010), TAS-121 and unspecified "EGFR TKI inhibitor.

[°]Includes gefitinib, erlotinib, icotinib, afatinib and unspecified "EGFR TKI."

Conclusions

- ARCHER 1050 is the first randomized phase 3 study comparing two EGFR TKIs as first-line therapy for EGFR mutation-positive NSCLC that has demonstrated improvement in OS
- Dacomitinib was superior to gefitinib in both PFS and OS
 - PFS: 41% lower risk of progressive disease or death (HR, 0.59; P < 0.0001), with an improvement of 5.5 months in median PFS (14.7 vs 9.2 months, respectively)
 - OS: 24% lower risk of death (HR, 0.76; P = 0.0438), with an improvement of 7.3 months in median OS (34.1 vs 26.8 months, respectively)
- Evidence of improvement in all prespecified subgroups
- Median C5 of patients with dacomitinib followed by a third-generation EGFR TKI was 36.7 months
- Dacomitinib should be considered as a new treatment option for firstline management of patients with EGFR mutation-positive advanced NSCLC

To Make Things More Complex in the EGFR arena

at ASCO.... the resurrection of anti-angiogenesis

ASCO Meeting June 1-5, 2018

Phase III study comparing bevacizumab plus erlotinib to erlotinib in patients with untreated NSCLC harboring activating EGFR-mutations: NEJ 026

Naoki Furuya¹, Tatsuro Fukuhara², Haruhiro Saito³, Kana Watanabe², Shunichi Sugawara⁴, Shunichiro Iwasawa⁵, Yoshio Tsunezuka⁶, Ou Yamaguchi⁷, Morihito Okada⁸, Kouzou Yoshimori⁹, Ichiro Nakachi¹⁰, Akihiko Gemma¹¹, Koichi Azuma¹², Koichi Hagiwara¹³, Toshihiro Nukiwa¹⁴, Satoshi Morita¹⁵, Kunihiko Kobayashi⁷, and Makoto Maemondo¹⁶,

North East Japan Study Group

¹St. Marianna University School of Medicine, ²Miyagi Cancer Center, ³Kanagawa Cancer Center, ⁴Sendai Kousei Hospital, ⁵Chiba University Hospital, ⁶Ishikawa Prefectural Central Hospital, ⁷Saitama Medical University International Medical Center, ⁸Hiroshima University, ⁹Fukujuji Hospital, JATA, ¹⁰Saiseikai Utsunomiya Hospital, ¹¹Nippon Medical School, ¹²Kurume University School of Medicine, ¹³Jichi Medical University, ¹⁴Tohoku University, ¹⁵Kyoto University Graduate School of Medicine, ¹⁶Iwate Medical University.

Bevacizumab plus Erlotinib combination (2nd line)

BeTa Lung (Phase III study)

R

2nd line setting

Advanced stage

NSCLC

All-comers

Age ≥18 years

PS 0-2

Bevacizumab group

Erlotinib 150mg qd

Bevacizumab 15mg/kg q3w

(n = 319)

Control group

Erlotinib 150mg qd

Placebo q3w

(n = 317)

Herbst RS, et al. Lancet 2011; 377(9780): 1846-1854.

Bevacizumab plus Erlotinib combination (1st line)

JO25567 (Randomized phase II study)

1:1

Chemotherapy-naïve

PS 0-1

Non-squamous

Stage IIIB/IV or

postoperative recurrence

Activating *EGFR* mutations*

Exon 19 deletion

Exon 21 L858R

No brain metastasis

*T790M excluded

BE combination

Bevacizumab 15mg/kg q3w

Erlotinib 150mg qd

(n = 75)

E monotherapy

Erlotinib 150mg qd

(n = 75)

Kato T, et al. ASCO Annual Meeting 2014; Oral session #8005. Seto T, et al. Lancet Oncol 2014; 15(11): 1235-1244.

Overall survival follow-up

- At the primary analysis of JO25567, OS data was immature.
- After primary completion in Mar 2014, we initiated this additional follow-up to evaluate OS with enough observation period.
- Seventy-five patients were enrolled into this follow-up between June and October 2014.
- The patients who could not provide written informed consent due to death or lost to follow-up were also included in this final OS analysis by using the data collected prior to the imary completion of JO25567.
- Sample size of JO25567 was not sufficiently powered to assess the OS benefit of erlotinib plus bevacizumab.

Final Overall survival

Noboru Yamamoto

10

Overall survival by EGFR mutation type

Exon 19 deletion

Exon 21 L858R

Study Period Design: NEJ 026 (Phase III study)

- Chemotherapy-naïve
- Non-Sq NSCLC
- PS 0-2
- Stage IIIB/IV
 or postoperative recurrence
- Activating EGFR-mutations*
 Ex19 del, Ex21 L858R
- Asymptomatic CNS metastases
 allowed
 *T790M excluded

R

BE combination

Bevacizumab 15mg/kg q3w

+

Erlotinib 150mg qd

(n = 107)

E monotherapy

Erlotinib 150mg qd

(n = 107)

Stratification factors

Sex Clinical stage

Smoking status EGFR-mutation subtypes

Baseline characteristics

		BE (n=112)	E (n=112)
Pathology	Adenocarcinoma	110 (98.2%)	112 (100.0%)
	Large cell carcinoma	1 (0.9%)	0 (0%)
	Other	1 (0.9%)	0 (0%)
EGFR-mutation type	Ex19 deletion	56 (50.0%)	55 (49.1%)
	Ex21 L858R	56 (50.0%)	57 (50.9%)
	IIIB	8 (7.1%)	8 (7.1%)
Stage at screening	IV	82 (73.2%)	84 (75.0%)
	Postoperative recurrence	22 (19.6%)	20 (17.9%)
CNS metastases	(+)	36 (32.1%)	36 (32.1%)
	(-)	76 (67.9%)	76 (67.9%)

Primary endpoint: PFS by independent review

Adverse events

	All grades		Grade ≧3	
	BE (n=112)	E (n=114)	BE (n=112)	E (n=114)
Rash	99 (88.4%)	99 (86.8%)	23 (20.5%)	24 (21.1%)
Diarrhea	53 (47.3%)	47 (41.2%)	6 (5.4%)	2 (1.8%)
Hypertension	51 (45.5%)**	10 (8.8%)	25 (22.3%)**	0 (0%)
Proteinuria	36 (32.1%)**	3 (2.6%)	8 (7.1%)*	0 (0%)
Hepatic dysfunction	30 (26.8%)	34 (29.8%)	9 (8.0%)	6 (5.3%)
Pulmonary hemorrhage (PH)	3 (2.7%)	0 (0%)	0 (0%)	0 (0%)
Hemorrhage (PH excluded)	29 (25.9%)**	3 (2.6%)	2 (1.8%)	1 (0.9%)
Thrombosis	2 (1.8%)	6 (5.3%)	1 (0.9%)	1 (0.9%)
Interstitial lung disease (ILD)	0 (0%)	5 (4.4%)	0 (0%)	0 (0%)
				2 2 2 4 5 2 2 2

** *P* < 0.001 * *P* < 0.01

After ASCO 2018

June 1-5, 2018

Optimal sequence for EGFR mutation?

First generation TKI (10 months)

Osimertinib for T790M (10 months)

OS?

Chemo (5 months)

AURA 3

Second generation TKI (14-16 months)

Osimertinib for T790M (10 months)

36.7 mo!!

Chemo (5 months) **ARCHER 1050**

Osimertinib (19 months)

FLAURA

Cher OS?

Other Anti-Angiogenic Combinations: Ongoing trial.

Osimertinib and bevacizumab

Patient population: Untreated Metastatic FGFR+ LC No prior EGFR TKI No contraindications to Bev

Phase 1:

3+3 Dose de-escalation design Dose level 1: Full doses both drugs

Phase 2:

MTD from Phase 1

Primary endpoint: PFS at 12 months

Accrual=49

37 ongoing on treatment Reasonable toxicity profile No CNS progression (mandated interval MRIs) Pre/post treatment biopsies, serial plasma Primary endpoint not yet evaluable

Yu PASCO 2017

EGFR TKI and immunotherapy

Osimertinib and durvalumab combination therapy with 38% incidence of pneumonitis

Rizvi PASCO 2014, Gettinger JTO in press, Ahn WCLC 2016, Nagasaka Clin Lung Cancer 2018

EGFR and Immunotherapy

- Lack of benefit with IO monotherapy as 2nd line treatment for pts with EGFR+ NSCLC
- Largely may be related to low PDL1 expression and low **TMB**
- IMpower150 first study to show benefit of addition of IO in EGFR+/ALK+ LCs
- Larger studies needed to define role of IO in this population

The Case for Using Osimertinib as 1st Line T_X

- Superior PFS
- Favorable OS trend (cross-over allowed)
- CNS activity
- Better tolerance
- Overcome key resistance mechanisms

Suresh Ramalingam. Is PFS Still a Relevant Endpoint for 1st Line TKI? European Lung Cancer Congress, April 11-14, 2018

APPLE Trial under EORTC

The APPLE Trial: Feasibility and Activity of AZD9291 (Osimertinib) Treatment on Positive Plasma T790M in EGFR - mutant NSCLC Patients. EORTC 1613: Randomized, open-label, multicenter, 3-arms, phase II study; to evaluate the best strategy of sequencing gefitinib and osimertinib treatment.

Uncommon EGFR Mutations

What about uncommon EGFR mutations and EGFR exon 20 insertion mutations?

EGFR mutation EGFR TKI [in vitro sensitivity and expected overall response			rall response rate (ORF	
EGFR TKI sensitivity type	Approximate frequency (%)	1 st generation	2 [™] generation	3 [™] generation
		Gefitinib 250 mg Erlotinib 150 mg	Afatinib 40 mg	Osimertinib 80 mg
Sensitizing				
Exon 19 deletion	45.0	++++ (ORR >70%)	++++ (ORR >75%)	++++ (ORR >70%)
L858R	35.0	++++ (ORR >60%)	++++ (ORR >70%)	++++ (ORR >60%)
G719X	3.0	++ (ORR >55%)	+++ (ORR >65%)	++ (ORR ?)
L861Q	3.0	++ (ORR >55%)	++ (ORR >55%)	++ (ORR ?)
S768I	<1.5	+ (ORR >45%)	++ (ORR >55%)	? (ORR ?)
Exon 18 indel/E709X	<0.5	++ (ORR >55%)	+++ (ORR >65%)	++ (ORR ?)
Exon 19 insertion	<0.5	++ (ORR >55%)	++ (ORR ?)	++ (ORR ?)
A763_Y764insFQEA	<0.5	++ (ORR >55%)	++ (ORR ?)	++ (ORR ?)
Exon 18-25 duplication (EGFR-KDD)	<0.5	++ (ORR >55%)	+++ (ORR >65%)	++ (ORR ?)
Rearrangement (EGFR-RAD51)	<0.5	++ (ORR >55%)	+++ (ORR ?)	++ (ORR ?)
Insensitizing				
Exon 20 insertion	>7.0	- (ORR <5%)	- (ORR <10%)	- (ORR ?)
T790M inherited	<1.0	- (ORR ~0%)	- (ORR ~0%)	++++ (ORR >60%)
Others	>2.0	? (ORR ?)	? (ORR ?)	? (ORR ?)
Acquired resistance				
T790M + sens.	>50.0 (1 st /2 ^{hd} gen. TKI)	- (ORR ~0%)	- (ORR <5%)	++++ (ORR >60%)
C797X + T790M + sens.	<50.0 (osimertinib)	- (ORR ~0%)	- (ORR ~0%)	- (ORR ~0%)

++++, maximum inhibition; +++, moderate inhibition; ++, adequate inhibition; +, minimal inhibition; -, no significant inhibition beyond the therapeutic window of wild-type EGFR; EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor; ?, unknown; sens, sensitizing mutation; gen., generation.

•

Uncommon EGFR mutations: afatinib 1st line indication extended (Jan 2018)

EGFR Mutation	Number of Afatinib Treated Patients (N = 32)	Number of Confirmed Responses (N=21)	Duration of Response (months) (N=21)
S768I	1	1	37.3
S768I and G719X	5	4	4.1, 13.2, 15.2, 29.5+
S768I and L858R	2	1	34.5+
G719X	8	6	5.7+, 8.1, 9.6, 23.5+, 25.2, 31.8+
G719X and L861Q	3	2	2.8+, 6.8
L861Q	12	7	2.8, 4.0, 4.1, 8.3+, 12.9, 15.2, 20.6
L861Q and Del 19	1	0	NA

⁺ response ongoing at time of censoring

Subset analysis LUX lung 2,3,6 (32pts):

ORR: 66%

DOR > 12m: 52%

EGFR exon 20 insertion mutations: no therapeutic efficacy of 1st and 2nd gen. EGFR-TKIs > poziotinib induces partial response in 73% (8/11)

- Osimertinib met its primary endpoint PFS over Gefitinib/Erlotinib; OS is not mature yet, but <u>promising</u>.
- Osimertinib is approved for 1st Line Therapy for sensitive EGFR mutations; category 1 by NCCN. To date, there are 4 category 1 as therapy (gefitinib, erlotinib, afatinib, osimertinib).

NCCN Guidelines Version 5.2018 Non-Small Cell Lung Cancer

NCCN Guidelines Index Table of Contents Discussion

SENSITIZING EGFR MUTATION POSITIVE^{hh}

FIRST-LINE THERAPYMM

nnFor performance status 0-4.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

hhSee Principles of Molecular and Biomarker Analysis (NSCL-G).

^{**}MSee Targeted Therapy for Advanced or Metastatic Disease (NSCL-I).

- Osimertinib met its primary endpoint PFS over Gefitinib/Erlotinib; OS is not mature yet, but <u>promising</u>.
- Osimertinib is approved for 1st Line Therapy for sensitive EGFR mutations; category 1 by NCCN. To date, there are 4 category 1 as therapy (gefitinib, erlotinib, afatinib, osimertinib).
- Osimertinib: very active on CNS metastases & favorable toxicity profile.
- OS for exon 19 EGFR mutant (+) patient range 33-37 months based on LUX Lung 3 and ARCHER 1050. FLAURA and AURA 3 trials data is eagerly awaited. This trial raises the question of sequencing 2G → 3G.
- ☐ Gefitinib/Carbo/Pem... unprecendeted 52 months!! (upfront over gefitinib) [NEJ009]; this trial underscores the role of Carbo/Pem in EGFR + NSCLC.

- Combination of osimertinib plus Bev, MET inhibitors, and others are ongoing in different clinical settings.
- **EGFR TKI and IO induces high rate of pneumonitis.**
- Afatinib is the only EGFR TKI with FDA indication for uncommon EGFR mutations.
- Poziotinib seems to be promising for exon 20 insertion EGFR mutation.
- □ Erlotinib and Bev new standard of care in Asia, perhaps it is time to consider it in USA as another option; E/B > E alone. Phase II and III studies corroborate that (JO25567 and NEJ 026).
- □In my opinion, exon 19 EGFR mutation patients have several therapeutic options (see NCCN guidelines; version 5.2018, June 27, 2018).

- ☐ The treatment for *EGFR* mutant patients has several choices after what we have learned in the last 10 months.
- ☐Good for our patients, more work for us.... the clinicians.
- More questions than ever.

I need time to digest too much info.

