TNBC/BRCA MUTATED TUMORS: WHAT'S NEW? Yuan Yuan, MD, PhD Associate Professor Department of Medical Oncology & Therapeutics Research 14th Annual California Cancer Consortium Meeting ### COI Grant/research support: Puma, Novartis, Merck, Genentech, Eisai consultant: Puma speakers bureau: Eisai The speaker will directly disclosure the use of products for which are not labeled (e.g., off label use) or if the product is still investigational. 14th Annual California Cancer Conference Consortium August 10-12, 2018 #### **Outline** - Overview of TNBC Biology - PI3K/AKT/MTOR Targeting: - LOTUS (ipatasertib) - PKAT (AZD5363, capivasertib) - PARP inhibitor: Neoadjuvant Talazoparib - PARP inhibitor + Immune Check Point Inhibitor: - TOPACIO (Niraparib + Pembrolizumab) - Drug-Antibody Conjugates: IMMU-132 # Overview of Triple Negative Breast Cancer (TNBC) and Molecular Heterogeneity - Defined by lack of ER/PR/HER2 receptors - 15 -20% of all invasive breast cancers - Significantly more aggressive: visceral metastasis - Lack of effective therapy - Medium survival in mTNBC: - OS 13 month - PFS: - 1st line 12 weeks - 2nd line 9 weeks - 3rd line 4 weeks ## Clinically targetable pathways in TNBC #### PI3K/AKT/mTOR Pathway in Breast Cancer | Subtype | HR+ HER2- | TNBC | |---------------|-----------|--------| | PIK3CA mut | 40% | 7-9% | | PTEN mut/loss | 2-4% | 30-40% | | PIK3R1 mut | 3% | 1% | | AKT1 mut | 2-3% | Rare | #### AKT can be activated by: - Loss of function of negative regulators: PTEN INPP4B - PHLPP PP2A - Gain of function of positive regulators: PI3K AKT Receptor tyrosine kinases (HER2) Therapy-induced survival response: Chemotherapy Hormone therapy ### PIK3CA/PTEN/AKT Alterations Among TNBC Subtypes #### LOTUS: A Randomized Phase II Trial of Paclitaxel + Ipatasertib #### **LOTUS: Overall survival** | Population | N | PBO + PAC
(mon.) | IPAT + PAC
(mon.) | HR
(95% CI) | |-----------------------|-----|---------------------|----------------------|----------------------| | ITT | 124 | 18.4
(15.1-29.1) | 23.1
(18.6-28.1) | 0.62
(0.37, 1.05) | | PIK3CA/AKT1/PTEN Alt. | 42 | NE
(8.7-NE) | 9.7
(18.6-28.6) | 0.9
(0.38, 2.15) | | PIK3CA/AKT1/PTEN WT | 61 | 16.2
(13.8-22.2) | 23.1
(17.7-NE) | 0.58
(0.26, 1.31) | | PTEN low* | 48 | 16.1
(9.0-29.1) | 21.8
(18.3-28.1) | 0.86
(0.4, 1.83) | | PTEN not low | 53 | 18.6
(10.1-24.9) | 28.5
(17.8-NE) | 0.56
(0.26, 1.23) | ^{*}PTEN low: IHC score 0 in at least 50% tumor cells by Ventana IHC assay. ## 5 mon OS benefit in IIT Final OS in 2019 #### **LOTUS: Safety** ## Updated safety: Most common^a adverse events (all grades) #### **LOTUS: Conclusion** - In LOTUS, a placebo-controlled randomized trial, the previously observed PFS improvement with IPAT is followed by a trend toward improved OS (~5-month difference in the medians in the ITT population) - Type of subsequent anti-cancer therapy was similar in the two arms - Final OS results are expected in 2019 - Diarrhea was the most clinically relevant additive toxicity - Findings support further evaluation of first-line IPAT + PAC for metastatic TNBC - The ongoing IPATunity130 (NCT03337724) randomized phase III trial is evaluating IPAT + PAC as first-line chemotherapy for PIK3CA/AKT1/PTEN-altered advanced TNBC or hormone receptor-positive HER2-negative breast cancer #### Phase III IPATunity 130 Trial #### PAKT: phase II trials of Paclitaxel +/- AZD5363 - Metastatic breast cancer - Triple-negative disease: - ER/PR <1% - HER2 IHC0-2 and/or ISH negative - Measurable or evaluable disease - No prior treatment for metastatic breast cancer - No taxane treatment <12 months Paclitaxel + AZD5363 Paclitaxel + Placebo | Population | n | PFS | OS | |-----------------------|-----|--|--| | ITT | 138 | 4.2 vs 5.9 m.
HR 0.74 (0.5,1.08)
p=0.06 | 12.6 vs 19.1 m.
HR: 0.61 (0.37, 0.99)
p=0.02 | | PIK3CA/AKT1/PTEN Alt. | 28 | 3.8 vs 9.3 m.
HR 0.3 (0.11-0.79)
p=0.01 | 10.4 vs NR.
HR 0.37 (0.12-1.12)
p=0.61 | | PIK3CA/AKT1/PTEN WT | 84 | 4.4 vs 5.3 m.
HR 1.13 (0.7,1.82)
p=0.067 | 13.2 vs 16.6 m.
HR 0.84 (0.48,1.49)
p=0.56 | n=70 #### **PAKT: Toxicities** #### **PAKT** #### AEs <a>>5% (All grade) | | Paclitaxel +
Placebo
(n = 70) | Paclitaxel +
AZD5363
(n = 68) | |---|-------------------------------------|-------------------------------------| | Number of patients with at least one AE | 91.4% | 97.1% | | Diarrhoea | 27.1% | 72.1% | | Fatigue | 25.7% | 44.1% | | Nausea | 32.9% | 35.3% | | Rash | 15.7% | 41.2% | | Neuropathy | 18.6% | 25.0% | | Stomatitis | 14.3% | 26.5% | | Infection | 14.3% | 22.1% | | Decreased appetite | 11.4% | 20.6% | | Alopecia | 12.9% | 16.2% | | Vomiting | 8.6% | 19.1% | | Constipation | 14.3% | 7.4% | | Abdominal pain | 10.0% | 10.3% | | Dry skin | 2.9% | 14.7% | | Dyspnoea | 7.1% | 8.8% | | Headache | 4.3% | 11.8% | | Oedema | 5.7% | 8.8% | | Dysgeusia | 4.3% | 10.3% | | Anaemia | 5.7% | 7.4% | | Dyspepsia | 5.7% | 7.4% | | Joint pain | 8.6% | 2.9% | | Musculoskeletal pain | 7.1% | 4.4% | | Asthenia | 4.3% | 7.4% | | Neutropenia | 2.9% | 8.8% | | Cough | 8.6% | 1.5% | | Hyperglycaemia | 1.4% | 8.8% | #### Grade 3 and 4 AEs | | Paclitaxel+ | Paclitaxel+ | |---------------------------|-------------|-------------| | | Placebo | AZD5363 | | | (n = 70) | (n = 68) | | Diarrhoea | 1.4% | 13.2% | | Infection | 1.4% | 4.4% | | Neutropenia | 2.9% | 2.9% | | Fatigue | 0.0% | 4.4% | | Rash | 0.0% | 4.4% | | Vomiting | 1.4% | 1.5% | | ALT increased | 0.0% | 1.5% | | Anaemia | 1.4% | 0.0% | | AST increased | 0.0% | 1.5% | | Asthenia | 0.0% | 1.5% | | Decreased appetite | 0.0% | 1.5% | | Headache | 0.0% | 1.5% | | Hyperglycaemia | 0.0% | 1.5% | | Hypophosphatemia | 0.0% | 1.5% | | Infusion related reaction | 0.0% | 1.5% | | Musculoskeletal pain | 0.0% | 1.5% | | Nausea | 0.0% | 1.5% | | Neuropathy | 0.0% | 1.5% | | Rash acneiform | 0.0% | 1.5% | | Retinal detachment | 0.0% | 1.5% | | Stomatitis | 0.0% | 1.5% | #### **Outline** - Overview of TNBC Biology - PI3K/AKT/MTOR Targeting: - LOTUS (ipatasertib) - PKAT (AZD5363, capivasertib) - PARP inhibitor: Neoadjuvant Talazoparib - PARP inhibitor + Immune Check Point Inhibitor: - TOPACIO (Niraparib + Pembrolizumab) - Drug-Antibody Conjugates: IMMU-132 ## First FDA Approved PARP inhibitor in Breast Cancer: Phase III OlympiAD Trial in MBC with Germline BRCA Mutations ### OlympiAD Schema - HER2-negative metastatic BC - ER+ and/or PR+ or TNBC - Deleterious or suspected deleterious gBRCAm - Prior anthracycline and taxane - ≤2 prior chemotherapy lines in metastatic setting - HR+ disease progressed on ≥1 endocrine therapy, or not suitable - · If prior platinum use - No evidence of progression during treatment in the advanced setting - ≥12 months since (neo)adjuvant treatment Olaparib 300 mg tablets bd 2:1 randomization Chemotherapy of physician's choice (PC) • Capecitabine • Eribulin • Vinorelbine #### **Primary endpoint:** Progression-free survival (RECIST 1.1, BICR) #### Secondary endpoints: progression Treat until - Time to second progression or death - Overall survival - Objective response rate - Safety and tolerability - Global HRQoL (EORTC-QLQ-C30) BICR, blinded independent central review; ER, estrogen receptor; HRQoL, health-related quality of life; PR, progesterone receptor; RECIST, response evaluation criteria in solid tumors; TNBC, triple negative breast cancer Robson, et al.; NEJM 2017 ## First FDA Approved PARP inhibitor in Breast Cancer: Phase III OlympiAD Trial in MBC with Germline BRCA Mutations - Median PFS for Olaparib vs SOC (7.0 months vs. 4.2 months; hazard ratio for disease progression or death, 0.58; 95% confidence interval, 0.43 to 0.80; P<0.001). - RR was 59.9% in the olaparib group and 28.8% in the SOC group ## Neoadjuvant Talazoparib for Early Stage Breast Cancer Patients with a BRCA Mutation - Talazoparib is a highly potent, dual-mechanism PARP inhibitor¹⁻⁴ - Inhibits PARP enzymes - Traps PARP on single-stranded DNA breaks - Prevents repair of DNA damage, resulting in cell death #### Phase III EMBRACA Trial - Phase 3 EMBRACA trial - 1 mg orally daily vs. physician's choice of chemotherapy - Improvement in PFS (HR 0.54, 95% CI: 0.41-0.71) - OS was immature with 51% events (HR 0.76, 95% CI: 0.54-1.06) #### Neoadjuvant Talazoparib Study Design ## Neoadjuvant Talazoparib #### **Pathology Response** #### **Hematological Toxicities & RBC Transfusions** | Toxicity | Grade 1 | Grade 2 | Grade 3 | Grade 4 | |------------------|---------|---------|---------|---------| | Anemia | 4 | 3 | 8 | - | | WBC Decreased | 8 | 4 | - | - | | Thrombocytopenia | - | - | - | 1 | | Neutropenia | | 4 | 3 | - | | Total Number of Transfusions During Study | Number of Patients | |---|---------------------------------| | 1 Transfusion | 3 | | 2 Transfusions | 3 | | 3 Transfusions | 2 | | Total Units PRBCs | 29 (1-2 PRBCs per transfusions) | #### **Non-hematological Toxicities** | Toxicity | Grade 1 | Grade 2 | Grade 3 | Grade 4 | |----------------------------|---------|----------|---------|---------| | Nausea | 14 | 1 | * | - | | Fatigue | 14 | - | - | - | | Alopecia | 11 | | | | | Dizziness | 6 | <u>-</u> | - | - | | Dyspnea | 5 | | | • | | Hyperglycemia | 5 | - | - | - | | Pain (in breast and other) | 8 | 1 | - | - | | Increased transaminases | 4 | - | - | - | | Mucositis | 4 | - | | - | | Vomiting | 2 | 1 | - | - | | UTI | | 2 | 1 | - | | Hypomagnesemia | 3 | - | - | - | #### Conclusion - Pathologic responses to single agent talazoparib - pCR: 10/19 = 53%, 95% CI = 32%, 73% - RCB-0+I: 12/19 = 63%, 95% CI = 41%, 81% - First study of a single targeted therapy to achieve pCR in BRCA+ patients, including TNBC - Talazoparib was well tolerated with acceptable adherence. - Common toxicities were predominately hematologic and managed by dose delays, reductions and transfusions - This study warrants the larger confirmatory trial (NCT02282345) #### C3441020 Study Schema ### PARP inhibitor + Immune check point inhibitor TOPACIO/Keynote-162: Ph II Niraparib + Pembro in mTNBC ## Rationale for Niraparib (PARPi) + anti-PD-1 Combination Preclinical studies demonstrated synergistic activity of PARPi + anti-PD-1, regardless of *BRCA* mutational status or PD-1 sensitivity - Potential Mechanism of Action - Unrepaired DNA damage resulting from niraparib treatment leads to the abnormal presence of DNA in the cytoplasm, activating <u>Stimulator of Interferon Genes</u> (STING) pathway - Activation of the STING pathway leads to increased expression and release of type 1 interferons, subsequent induction of γinterferon, and intratumoral infiltration of effector T-cells Huang Biochem Biophys Res Commun 2015 Sato Nat Commun 2017 Jiao CCR 2017 Vinayak 2018 ASCO #### **TOPACIO: Study Design** #### **Objective:** Evaluate niraparib and anti-PD-1 combination therapy in metastatic TNBC patients Phase 2 Statistical Plan **Hypothesis** Null: ORR ≤ 15% Power to reject null with 82% - assuming true ORR=30% N=48 patients 94% - assuming true ORR=35% (alpha=10%, two-sided) *ER and PR < 1% per ASCO/CAP guidelines #Prior amendment allowed up to 3 prior lines of cytotoxic therapy for advanced disease **Prior amendment had no restriction on platinum for inclusion or exclusion criteria #### **Key Inclusion Criteria** - TNBC (ER-negative, PR-negative, and HER-2 negative)* - Disease recurrence or progression following neoadjuvant/adjuvant therapy - ≤2 prior lines of cytotoxic treatment for advanced disease (not including neoadjuvant/adjuvant therapies or targeted small molecules)# - Prior platinum allowed in metastatic setting if no progression documented while on or within 8 weeks of last platinum** #### **Key Exclusion Criteria** • Prior treatment with an anti-PD-1, anti-PD-L1, anti-PD-L2, or PARP inhibitor #### **Response Assessments** Scans every 9 weeks ### **TOPACIO: Study Demographics & Baseline Characteristics** | Characteristics | N=55 | |--|-----------| | Median Age (years) | 54 | | ECOG performance status | | | 0 | 30 (55%) | | 1 | 25 (45%) | | Prior lines of therapies in advanced/metastatic setting, median (range)* | 1 (0 – 3) | | 0 | 19 (35%) | | 1 | 21 (38%) | | 2 | 14 (25%) | | 3 | 1 (2%) | | Previous neoadjuvant or adjuvant therapy | 43 (78%) | | Previous chemotherapy in advanced/metastatic setting | | | Platinum | 21 (38%) | | Gemcitabine | 14 (26%) | | Taxane | 14 (26%) | | Capecitabine | 12 (22%) | | Eribulin | 7 (13%) | | Anthracycline | 4 (7%) | | Cyclophosphamide | 3 (6%) | | Ixabepilone | 1 (2%) | - 27% with ≥ 2 prior lines of therapies - 78% with prior neoadjuvant or adjuvant therapy - 38% with prior platinum (Median time from prior platinum therapy to first treatment on TOPACIO: 8.7 months (range: 0.7 - 30.6)) ECOG = Eastern Cooperative Oncology Group. *Small molecules and investigational agents were not counted towards lines of therapy. #### **TOPACIO: ORR** | Response | Response Rate, n (%) Efficacy Evaluable (N=46)* | | |--------------------------|---|-------------------------------| | Complete Response (CR) | 3 (7%) | 9 Patients still on treatment | | Partial Response (PR)** | 10 (22%) | • 2 CR | | Stable Disease (SD) | 10 (22%) | • 6 PR | | Progressive Disease (PD) | 23 (50%) | • 1SD | | | | , | | ORR (CR+PR) | 13 (28%) | | | DCR (CR+PR+SD) | 23 (50%) | | ^{*9} pts did not have evaluable post-baseline tumor assessments and were not included in the evaluable population (6 pts discontinued due to AE; 1 due to clinical progression and 2 for other reasons). ^{**}Responses include both confirmed and unconfirmed; DCR: Disease Control Rate; Data as of April 02, 2018 #### **TOPACIO: Response in Biomarker Selected Patients** #### **TOPACIO: Safety** | Event | Any Grade (N=55) | Grade ≥3 (N=55) | |----------------------|------------------|-----------------| | Nausea | 30 (55%) | 0 | | [§] Fatigue | 23 (42%) | 4 (7%) | | Anemia | 17 (31%) | 8 (15%) | | Thrombocytopenia | 13 (24%) | 7 (13%) | | Constipation | 11 (20%) | 0 | | Diarrhea | 10 (18%) | 0 | | Decreased appetite | 9 (16%) | 0 | | Vomiting | 7 (13%) | 0 | #### **TOPACIO: Conclusion** - Niraparib in combination with a PD-1 inhibitor has shown promising durable antitumor activity in patients with advanced TNBC - Clinical activity was observed in both tBRCAwt and tBRCAmut patients - HRR mutations may enrich activity in tBRCAwt - Median DOR has not been reached; 8/13 (62%) responders are still on treatment - Five patients with long-term ongoing clinical benefit for ~1 year - Combination is well-tolerated - Substantially reduced thrombocytopenia with 200 mg starting dose of niraparib - No augmentation of immune-mediated AEs with the addition of a PD-1 inhibitor #### **Outline** - Overview of TNBC Biology - PI3K/AKT/MTOR Targeting: - LOTUS (ipatasertib) - PKAT (AZD5363, capivasertib) - PARP inhibitor: Neoadjuvant Talazoparib - PARP inhibitor + Immune Check Point Inhibitor: - TOPACIO (Niraparib + Pembrolizumab) - Drug-Antibody Conjugates: IMMU-132 ## IMMU 132: anti-Trop-2-SN-38 antibody-drug conjugate, as ≥ 3rd line therapy in refractory mTNBC Anti-Trop-2 Antibody Trop-2: up to 80% TNBCs SN-38: active metabolite of irinotencan Metastatic TNBC (ASCO/CAP quidelines) Sacituzumab govitecan 10 mg/kg Days 1 and 8, every 21 days Scanned every 8 weeks toxicity #### Key Eligibility Criteria N = 110 - Adults, ≥18 years of age - ECOG 0-1 - ≥2 prior therapies in metastatic setting or >1 therapy if progressed within 12 months of (neo)adjuvant therapy - Prior taxane therapy - Measurable disease #### **Evaluations** - Response evaluation by investigators - Blinded independent central review of all CRs, PRs, and ≥20% tumor reductions - Other evaluations: safety. immunogenicity, Trop-2 expression #### Response to treatment 102 patients had ≥1 scheduled CT response assessment. 8 patients withdrew prior to assessment (4 PD, 4 MRI brain metastases) PFS: 5.5 mon, OS 12.7 mon, estimated median DOR 7.6 mon G3 Tox: 39% neutropenia, 13% diarrhea, 7% febrile neutropenia #### Phase III ASCENT Trial #### **Take Home Messages** - Promising activities of AKT inhibitors + paclitaxel as 1st line therapy with more pronounced effects in PI3K/AKT/PTEN altered met TNBC - Neoadjuvant PARP inhibitor is promising in BRCA1/2 mutation - Combination of PARP inhibitor + IO warrant further investigation - Anti-Trop-2 Drug-Antibody conjugate shows promises ## We are a step-closer to precision medicine in TNBC!