

Targeted therapies for the treatment of Mature T cell lymphoma

Hayder Saeed, MD Associate Member

Moffitt Cancer Center

Objectives

- WHO classification of mature T cell lymphoma
- CD30 in mature T cell lymphoma
- CHOEP
- ECHELON-2 trial
- Belinostat
- Prelatrexate
- Romidepsin
- Duvelisib
- Azacitidine
- Cellular therapies

WHO classification of T cell lymphoma

ALCL:

- ALK-ALCL bearing TP63 rearrangements, loss of TP53 and/or overexpression of IL-2Rα are associated with poor outcomes.
- DUSP22 rearrangement have not been confirmed to be a good prognostic marker.

Nodal T-Follicular helper cell lymphoma

- New family of terminology is proposed to signify them as disease entities
- nTFHL-AI: acquisition of TET2 and DMNT3a mutations
- nTFHL-F, nTFHL-NOS are less well studied

ENKTL

• The qualifier "nasal-type" dropped from its name in WHO-HAEM5 in accordance with the recognized presentation of this disease at various extranodal sites.

Nodal EBV-positive T and NK-cell lymphoma

Occurs mostly in East Asians, and is now recognized as a distinct entity in WHO-HAEM5; previously it was subsumed as a subtype under the entity of PTCL-NOS.

Anaplastic large cell lymphoma	
ALK-positive anaplastic large cell lymphoma	Anaplastic large cell lymphoma, ALK-positive
ALK-negative anaplastic large cell lymphoma	Anaplastic large cell lymphoma, ALK-negative
Breast implant-associated anaplastic large cell lymphoma	(Same)
Nodal T-follicular helper (TFH) cell lymphoma	
Nodal TFH cell lymphoma, angioimmunoblastic-type	Angioimmunoblastic T-cell lymphoma
Nodal TFH cell lymphoma, follicular-type	Follicular T-cell lymphoma
Nodal TFH cell lymphoma, NOS	Nodal peripheral T-cell lymphoma with TFH phenotype
Other peripheral T-cell lymphomas	
Peripheral T-cell lymphoma, not otherwise specified	(Same)
EBV-positive NK/T-cell lymphomas	
EBV-positive nodal T- and NK-cell lymphoma	Not previously included

CD30 in T cell lymphoma

- CD30 is a 120 kDa transmembrane glycoprotein receptor. An 85 kDa soluble CD30 form (sCD30) can also be detected in vivo in inflammatory states and in CD30-expressing malignancies, which may be an independent predictor of prognosis in patients with CD30-expressing lymphomas.
- CD30 activation promotes a diverse range of effects including cell proliferation, differentiation, survival, or apoptosis, with specific effects likely to be dependent on the cell type, activation status, or cell transformation status
- CD30 expression is minimal in healthy adults but is most prominent in activated B cells, T cells, and NK cells, although it accounts for less than 1% of circulating activated lymphocytes
- Studies have shown that viral infection can increase the percentage of CD30-expressing activated peripheral blood cells from 0.1% at baseline up to 95% within 3 days
- Distinguishing between CD30-expressing neoplastic cells and CD30 expression in non-neoplastic activated lymphocytes is a key challenge.

CD30 in T cell lymphoma

Reference	Method	CD30 antibody	CD30 ⁺ % cell cutoff	PTCL-NOS	AITL	ATLL	ENKTL	ALK ⁻ ALCL	ALK ⁺ ALCL	EATL	CTCL/MF
Karube et al. 2008 (N = 319) [45]	FCM	NR	>70% 20-70%	5% 11%	0 32%	15% 24%	0 64%		%* %*	- -	9%/- 9%/-
Savage et al. 2008 (N = 490) [33]	IHC	NR	>0% ≥80%	32% 5%	_ _	- -	-	100%	100%	- -	_ _
Asano et al. 2011 (N = 47) [49]	IHC	Ber-H2	>30%	51% [†]	-	-	-	-	-	_	_
Duvic 2011 (N = 106) [50]	IHC	NR	>10%	-	-	-	-	-	-	-	-/11% [‡]
Weisenburger et al. 2011 (N = 217) [51]	IHC	NR	>20%	32%	-	-	-	-	-	-	-
Sabattini et al. 2013 (N = 192) [40]	IHC	Ber-H2	0: no staining 1+: >0% to <25% 2+: 25-50% 3+: >50-75% 4+: >75%	36% 13% 21% 13% 18%	51% 21% 12% 10% 0	- - - -	20% 10% 30% 10% 30%	- - - - -	- - - -	0 0 22% 0 78%	-/41% -/47% -/6% -/0 -/6%
Bossard et al. 2014 (N = 376) [44]	IHC	Ber-H2	0: <5% 1+: 5-24% 2+: 25-49% 3+: 50-75% 4+: >75%	42% 26% 9% 10% 13%	37% 47% 10% 5% 0	44% 11% 33% 11% 0	54% 7% 11% 14%	0 0 0 0 100%	0 0 5% 2% 93%	50% 0 0 7% 43%	- - - - -
Lamarque et al. 2016 (N = 46) [52] [§]	IHC	NR	<5% 5-24% 25-49% 50-75% >75%	10% 10% 30% 30% 20%	0% 100% 0% 0% 0%	100% 0% 0% 0% 0% 0%	 -	0 0 0 0 100%	0 0 20% 20% 60%	0% 100% 0% 0% 0%	14%/- 0/- 0/- 14%/- 71%/-
Wang et al. 2017 (N = 122) [35]	IHC	NR	0: no staining 1+: >0% to <25% 2+: 25-50% 3+: >50-75% 4+: >75%	- - - -	- - - -	- - - -	30% 38% 18% 10% 5%	- - - -	- - - -	- - - -	- - - - -
Kawamoto et al. 2018 (N = 97) [37]	FCM and IHC	Ber-H2	≥1% ≥10% ≥20%	- - -	- - -	- - -	57% 55% 44%	- - -	- - -	- - -	- - -

- Although there have been no randomized studies comparing CHOP and CHOEP regimens in PTCLs, a number of retrospective or phase 2 prospective studies have suggested a benefit of CHOEP. Due to the increased toxicity of CHOEP, this regimen is usually preferred in patients less than 60 years old.
- The effect is more pronounced in ALCL-ALK+ve patients versus other types of T cell lymphoma.
- CHOEP did not offer any benefit in the Asian population, several studies including a meta-analysis confirmed that.

ECHELON-2

- ECHELON-2 is a double-blind, double-dummy, randomized, placebocontrolled, active-comparator phase III study.
- Included Previously untreated CD30-positive PTCL (CD30 detected in >10% of neoplastic cells by local review)
- Eligible histologies included:
 - ALK+ve ALCL
 - ALK-ve ALCL
 - PTCL-NOS
 - AITL
 - ATLL
 - EATL
 - HS TCL

Patients were randomized to BV-CHP or CHOP.

- BV CHP improved PFS and OS in ITT.
- Retreatment with BV is possible and beneficial

Table 1. Response to first brentuximab vedotin treatment after frontline therapy							
	Overall	sALCL	PTCL-NOS	AITL	EATL		
A+CHP							
N	29	19	5	5	0		
Objective response rate, n (%)	17 (59)	12 (63)	3 (60)	2 (40)	NA		
Complete remission, n (%) ^a	11 (38)	8 (42)	2 (40)	1 (20)	NA		
Partial remission, n (%) ^a	6 (21)	4 (21)	1 (20)	1 (20)	NA		
CHOP							
N	54	39	10	4	1		
Objective response rate, n (%)	27 (50)	23 (59)	3 (30)	1 (25)	0 (0		
Complete remission, n (%) ^a	16 (30)	12 (31)	3 (30)	1 (25)	0		
Partial remission, n (%) ^a	11 (20)	11 (28)	0	0	0		

Belinostat

- T-cell lymphomas (TCLs) have have marked epigenetic dysregulation, which partially explains their sensitivity to histone deacetylase (HDAC) inhibitors.
- The identification of pathogenetic features affecting DNA methylation (TET2, IDH1/2, DNMT3) or histone remodeling in TCL may portend sensitivity to drugs affecting this biology.
- Belinostat is a pan-HDAC inhibitor, inhibiting class I, II and IV HDAC isoforms with nanomolar potency
- Its approval was based on the Phase II BELIEF trial.
- Enrolled patients with relapsed PTCL. Prior therapies 2 (1-8)
- ORR (25%), CR (11%)
- Median DOR; 14 mo (4.5-29mo)
- Median OS: 7.9 mo (6-13mo)
- Toxicity profile, manageable

PTCL subtype by central review	
PTCL-NOS	77 (64.2)
AITL	22 (18.3)
ALCL	
ALK negative	13 (10.8)
ALK positive	2 (1.7)
Enteropathy-associated TCL	2 (1.7)
Extranodal NK TCL, nasal type	2 (1.7)
Hepatosplenic TCL	2 (1.7)

Pretreatment Characteristic	ORR by IRC No. (%)	95% CI
PTCL subtype by central review		
PTCL-NOS	18 of 77 (23.3)	14.5 to 34.4
AITL	10 of 22 (45.5)	24.4 to 67.8
ALCL		
ALK negative	2 of 13 (15.3)	1.9 to 45.4
ALK positive	0 of 2 (0.0)	0.0 to 84.2
Enteropathy-associated TCL	0 of 2 (0.0)	0.0 to 84.2
Extranodal NK TCL, nasal	1 of 2 (50.0)	1.3 to 98.7
Hepatosplenic TCL	0 of 2 (0.0)	0.0 to 84.2

	NCI CTCAE Grade						
MedDRA Preferred Term	All Grades No. (%)	1 to 2 No. (%)	3 to 4 No. (%)				
SAEs (> two patients)	61 (47.3)	20 (15.5)	45 (34.9)				
Pneumonia	9 (7.0)	1 (0.8)	7 (5.4)				
Pyrexia	7 (5.4)	7 (5.4)	0 (0)				
Infection	4 (3.1)	0 (0)	4 (3.1)				
Anemia	3 (2.3)	0 (0)	3 (2.3)				
Increased blood creatinine	3 (2.3)	3 (2.3)	0 (0)				
Multiorgan failure	3 (2.3)	0 (0)	0 (0)				
Thrombocytopenia	3 (2.3)	0 (0)	3 (2.3)				

Romidepsin

- Romidepsin is a potent, bicyclic class 1 selective histone deacetylase (HDAC) inhibitor.
- 131 patients with RR PTCL were enrolled.
- Prior therapies 2 (1-8)
- ORR (25%), CR (13%)
- Median DOR; 16.6 mo (0.1-34 mo)
- Toxicity profile, significant for cytopenia
- FDA approval was withdrawn after failure of the randomized ph3 to show benefits over SOC CHOP.

		All E	vents		Drug-Related Events				
	All Grades		Gra		All Gr	All Grades		ide 3	
Event	No.	%	No.	%	No.	%	No.	%	
Nausea	77	59	3	2	71	54	2	2	
Infections SOC*	72	55	25	19	24	18	8	6	
Asthenia/fatigue	72	55	11	8	68	52	7	5	
Thrombocytopenia	53	41	32	24	52	40	30	23	
Vomiting	51	39	6	5	44	34	5	4	
Diarrhea	47	36	3	2	30	23	2	2	
Pyrexia	46	35	7	5	22	17	5	4	
Neutropenia	39	30	26	20	38	29	24	18	
Constipation	39	30	1	1	19	15	0		
Anorexia	37	28	2	2	34	26	2	2	
Anemia	32	24	14	11	27	21	7	5	
Dysgeusia	27	21	0		27	21	0		
Cough	23	18	0		2	2	0		
Headache	19	15	0		14	11	0		
Abdominal pain	18	14	3	2	8	6	0		
Dyspnea	17	13	3	2	7	5	1	1	
Leukopenia	16	12	8	6	16	12	8	6	
Chills	14	11	1	1	6	5	0		
Hypokalemia	14	11	3	2	7	5	2	2	
Peripheral edema	13	10	1	1	3	2	0		
Decreased weight	13	10	0		10	8	0		
Stomatitis	13	10	0		9	7	0		
Tachycardia	13	10	0		6	5	0		

- Pralatrexate is an antifolate that was designed to be efficiently internalized by the reduced folate carrier (RFC). In addition, because it is a superior substrate for folylpoly glutamyl synthetase, pralatrexate is more effectively polyglutamylated and retained, minimizing extrusion via natural efflux pumps.
- 115 patients with RR PTCL were enrolled.
- Prior therapies 3 (1-13)
- ORR (29%), CR (10%)
- ORR in AITL (8%)
- Median DOR; 10.1 mo
- Median OS 14.1 Mo
- Toxicity profile, significant for G3 cytopenia (14%), G3 Mucositis (18%)

- Duvelisib (DUV), a dual PI3K-δ,γ inhibitor
- The phase 2 trial PRIMO is ongoing
- It is given as 75 mg BID for the first 2 months then dose decrease to 25 mg BID afterwards to minimize autoimmune toxicity.

	ORR n (%)	CR* n (%)	Time to Response (days)	mDOR (days)	mPFS (days)
	Expansion Phase,	n=78			
IRC Assessment	39 (50.0%)	25 (32.1%)	53	233	107
Range			15-114	1+, 420+	1+, 469+
95% CI			N/A	90, NC	57, 188
Subtypes (n, %)					
PTCL NOS (42, 53.8%)	22 (52.4%)	12 (28.6%)			
ALCL (11, 14.1%)	1 (9.1%)*	1 (9.1%)			
AITL (21, 26.9%)	14 (66.7%)	10 (47.6%)			
Other (4, 0.5%)	2 (50%)	2 (50%)			

^{*4} patients had unknown response

Table 2. Selected > Grade 3 Adverse Events (n=78)						
Subjects with any TEAE resulting in treatment discontinuation	14 (17.9%)					
Adverse Event	Patients Number (%)					
Neutropenia	30 (38.5%)					
ALT/AST	19 (24.4%) / 17 (21.8%)					
Rash	6 (7.7%)					
Lymphocyte count decreased	6 (7.7%)					
Sepsis	5 (6.4%)					

- ORACLE study (NCT03593018), a phase III trial comparing CC-486, an oral form of 5-azacytidine, to single agent treatment chosen by the investigator.
- Eighty-six patients with relapsed/refractory AITL or nodal follicular helper T-cell lymphoma were randomized between CC-486 (n=42) and investigator's choice (gemcitabine, n=24, bendamustine n=16, romidepsin n=4)
- The primary endpoint was analyzed after a follow-up of 14.4 months.
- Median PFS in the CC-486 arm was 5.6 (95%CI, 2.66-8.11) months vs 2.8 (95%CI, 1.87-4.83) months in the standard arm (stratified log-rank test p=0.0421), with a hazard ratio of 0.634 (95%CI, 0.38; 1.07), which did not reach the required significance of p<0.025.

We have a phase 1 study using duvelisib in combination with oral azacytidine in rr PTCL

^{*} The dose of the drug will be according to dose escalation schedule.

Duvelisib dose will be 25mg BID starting cycle 3 and beyond unless the dose level is at -1 then it will be kept at 15mg/BID

BV and Gem

- Patients with confirmed CD30+ (≥5%) PTCL with measurable disease who failed or were refractory to 1-3 systemic therapy (excluding G and Bv) were enrolled (N=71)
- TFH-PTCL (34; 47.9%) [including AITL (27; 38%) and other nodal PTCL-TFH (7; 9.9%)];
- ALK- ALCL (14; 27%)
- PTCL-NOS (9; 13%)
- ALK+ ALCL (5; 7%)
- EATL (2; 2.8%)
- Other entities (7; 9.9%).
- ORR (46%), CR (19%)

Table 1 CD30 evaluation in non-ALCL pts

	Baseline serum sCD30 (ELISA) (n=48)		p	CD30 on tume (n=44)	P	
	≤120 ng/mL	>120 ng/mL		≤10%	>10%	
n	18	30		13	31	
ORR	77.8%	13.3%	<0.001	46.2%	38.7%	0.65
PFS	12.5 m (10.1-25.2)	3.2 m (2.0-4.0)	<0.001	4.1 m (1.7-10.3)	4.1 m (3.1-10.9)	0.53
os	29.6 m (13.4-39.3)	7.3 m (3.9-10.8)	<0.001	9.0 m (5.0-25.5)	13.4 m (7.3-29.6)	0.44
n	14	4		6	12	
DOR	24.0 m (10.4-38.7)	10.9 m (6.4-15.8)	0.019	10.3 m (4.9-NA)	17.7m (10-25.2)	0.32

NA: non achieved, m: months

TRBC1 CARTS

First in Human Study of AUTO4, a TRBC1-Targeting CAR T-Cell Therapy in Relapsed/Refractory TRBC1-Positive Peripheral T-Cell Lymphoma

- Pan T-cell depletion is highly toxic and there are few or no T-cell lymphoma-specific antigen targets that discriminate malignant from normal T cells.
- The British group recently described a targeting strategy based on the mutually exclusive expression of T cell receptor beta-chain constant domains 1 and 2 (TRBC1 and TRBC2) (Maciocia, PM. et al, Nat Med 2017) which can spare a proportion of the normal T cell compartment.
- Tumor biopsies from n=73 patients were screened for TRBC1, 36% were TRBC1+.
- Four flat dose levels of AUTO4 were explored: 25 x 106, 75 x 106, 225 x 106, and 450 x 106 CAR T cells were administered as a single dose.
- The PTCL subtypes treated were PCTL NOS (n=5), AITL (n=4), and CD30+ ALCL (n=1).
- Nine patients were evaluable for response at Month 1:
 - n=5 were in complete metabolic response (CMR) by PET-CT, though one patient was in CMR after bridging at the time of lymphodepletion,
 - 1 patient achieved a PR, and 3 patients did not respond.
 - One patient was not evaluable at Month 1 by PET-CT due to COVID19 infection.
 - Three of the 4 patients at the 450x106 cell dose achieved a CMR at Month 1. With longer follow-up, 2/4 patients at the 450x106 cell dose maintained a CMR at 6 and 9 months, respectively.

CTX-130

THE COBALT-LYM STUDY OF CTX130: A PHASE 1 DOSE ESCALATION STUDY OF CD70-TARGETED ALLOGENEIC CRISPR-CAS9—ENGINEERED CAR T CELLS IN PATIENTS WITH RELAPSED/REFRACTORY (R/R) T-CELL MALIGNANCIES

- CTX130TM is a first-in-class, CD70-targeting allogeneic (allo) CAR T therapy that may allow for CAR T therapy in pts whose own T cells are not ideal to manufacture auto CAR T cells.
- CD70 is a co-stimulatory protein with temporally limited expression on activated lymphocytes and is highly expressed in many TCLs.
- CTX130 is modified with CRISPR/Cas9-editing to eliminate expression of:
 - 1) T-cell receptor (TCR) by TCR alpha constant disruption
 - 2) major histocompatibility complex class I expression by β2-microglobulin disruption
 - 3) CD70 to mitigate fratricide and enhance performance.
- 4 dose levels were used. LD with Flu Cy.

Dose Level (CAR+ T Cells)	DL1	DL2	DL3	DL4	DL3+	Total
	3x10 ⁷	1x10 ⁸	3x10 ⁸	9x10 ⁸	DL4	
N	4	4	5	2	7	15
Age, median yrs (range)	58	66	67	68	68	67
	(41-67)	(39-71)	(54-78)	(68-68)	(54-78)	(39-78)
ECOG PS at Screening, n (%)						
0	1 (25)	3 (75)	2 (40)	2 (100)	4 (57)	8 (53)
1	3 (75)	1 (25)	3 (60)	0	3 (43)	7 (47)
Prior lines of therapy, median n	3	6	5	3	3	3
(range)	(1-6)	(3-8)	(1-7)	(2-3)	(1-7)	(1-8)
TCL subtype, n (%)						
PTCL	2 (50)	1 (25)	2 (40)	2 (100)	4 (57)	7 (47)
ATLL	1 (25)	1 (25)	1 (20)	0	1 (14)	3 (20)
AITL	0	0	1 (20)	2 (100)	3 (43)	3 (20)
PTCL-NOS	1 (25)	0	0	0	0	1 (7)
CTCL (MF or SS)	2 (50)	3 (75)	3 (60)	0	3 (43)	8 (53)
Skin Involvement, n (%)	3 (75)	3 (75)	4 (80)	0	4 (57)	10 (67)
Blood Involvement, n (%)	1 (25)	1 (25)	2 (40)	0	2 (29)	4 (27)
Bone Marrow Involvement, n (%)	0	0	3 (60)	0	3 (43)	3 (20)
ORR, n (%)	2 (50)	0	4 (80)	1 (50)	5 (71)	7 (47)
CR	1 (25)	0	2 (40)	0	2 (29)	3 (20)
PR	1 (25)	0	2 (40)	1 (50)	3 (43)	4 (27)
DCR, n (%)	3 (75)	1 (25)	5 (100)	2 (100)	7 (100)	11 (73)
SD	1 (25)	1 (25)	1 (20)	1 (50)	2 (29)	4 (27)
CRS, n (%)	1 (25)	1 (25)	4 (80)	1 (50)	5 (71)	7 (47)
Gr ≥3 CRS	0	0	0	0	0	0
ICANS, n (%)	0	0	3 (60)	0	3 (43)	3 (20)
Gr ≥3 ICANS	0	0	0	0	o	ò
Gr ≥3 Infection, n (%)	1 (25)	0	0	0	0	1 (7)
GvHD, n (%)	0	0	0	0	0	0

ATIL, angioimmunoblastic I-cell lymphoma; ATIL, adult I-cell leukemia/lymphoma; CAK, chimenc antigen receptor; CR, complete response; CRS, cytokine release syndrome; CTCL, cutaneous T-cell lymphoma; DCR, disease control rate; DL, dose level; ECOG, Eastern Cooperative Oncology Group; Gr, grade; GvHD, graft versus host disease; ICANS, immune effector cell-associated neurotoxicity syndrome MF, mycosis fungoides; NOS, not otherwise specified; PR, partial response; PS, performance status; PTCL, peripheral T-cell lymphoma; SD, stable disease; SS, Sezary syndrome; TCL, T-cell lymphoma.

Conclusions

- Mature T cell lymphomas are diverse biologically and can not be seen as one disease
- Understanding the rule of CD30 expression is essential for the management of T cell lymphoma
- CHOP continue to be an essential regimen for the majority of T cell lymphoma
- BV-CHP is the first regimen that changed the landscape of frontline therapy in T cell lymphoma
- Relapse/refractory T cell lymphoma has dismal prognosis
- Currently, only BV, Belinostat and Pralatrexate has FDA approval in relapse T cell lymphoma
- Newer targeted therapies using PI3Ki has the most promising activity.
- Cellular therapies are coming slowly into the T cell lymphoma space.

Thank you

