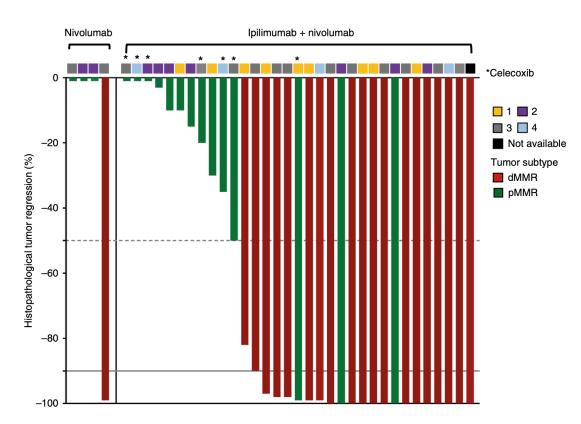


Colon and Rectal Cancer: Novel Therapies and Future Approaches


Axel Grothey, MD
West Cancer Center and Research Institute
Germantown, TN, USA

Neoadjuvant or definitive immunotherapy in rectal cancer?

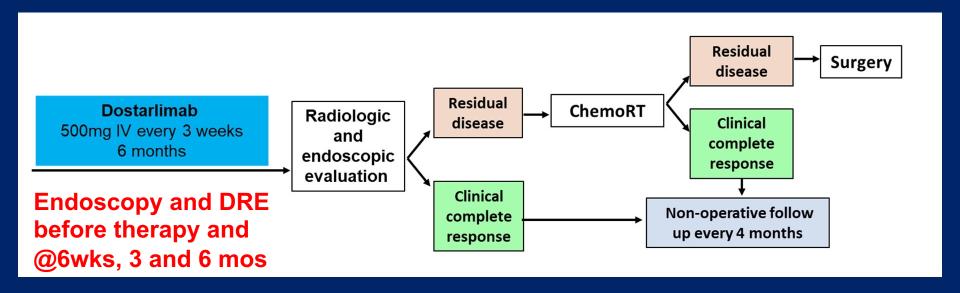
Neoadjuvant therapy in rectal cancer by MMR status

	No. of patients (%)			
Outcome	dMMR	pMMR		
FOLFOX as initial treatment	n = 21	n = 63		
Progression of disease	6 (29)	0		
Response or stable disease	15 (71)	63 (100)		
Chemoradiation as initial treatment	n = 16	n = 48		
Progression of disease	0	0		
Complete pathologic response	2 (13)	8 (17)		

Rectal Ca: Neoadjuvant IO Therapy

41 pts with rectal cancer treated with Nivo and Nivo/Ipi (35 assessable for reponse)
Path response in: 20/20 dMMR (12 pCR) 4/15 pMMR

Late breaking abstract

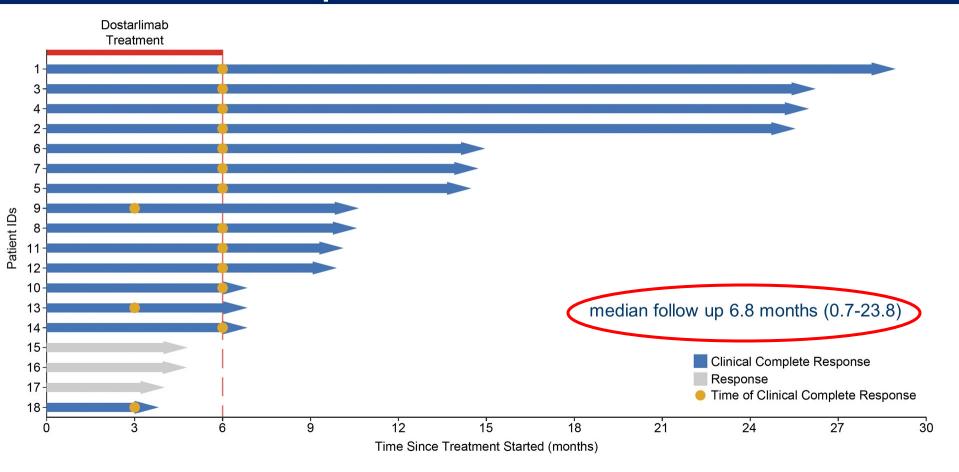

PD-1 blockade as curative-intent therapy in mismatch repair deficient locally advanced rectal cancer

Andrea Cercek, MD
Head, Colorectal Cancer Section
Co-Director Center for Young Onset Colorectal and Gastrointestinal Cancers
Memorial Sloan Kettering Cancer Center

Patient population: Stage II and III mismatch repair deficient rectal cancer

Target Enrollment: 30 subjects Target RR: 25%

Study Design: Simon's two stage minimax design


Demographic and disease characteristics	of the patients at baseline		
	Value (%)		
Sex			
Male	6 (33)		
Female	12 (67)		
Age, median (range)	54 (26-78)		
Race/Ethnicity			
White non-Hispanic	11 (61)		
Hispanic	1 (6)		
Black or African American	3 (17)		
Asian-Far East/Indian Subcontinent	3 (17)		
Tumor Staging			
T1/2	4 (22)		
T3, T4	14 (78)		
Nodal Staging			
Node-positive	17 (94)		
Node-negative	1 (6)		
Germline Mutation Status n=17			
MSH2, MLH1, MSH6, or PMS2	10 (59)		
Negative	7 (41)		
BRAF V600E wild type	18 (100)		
Tumor Mutational Burden (mut/Mb), mean (range)	67 (36 -106)		

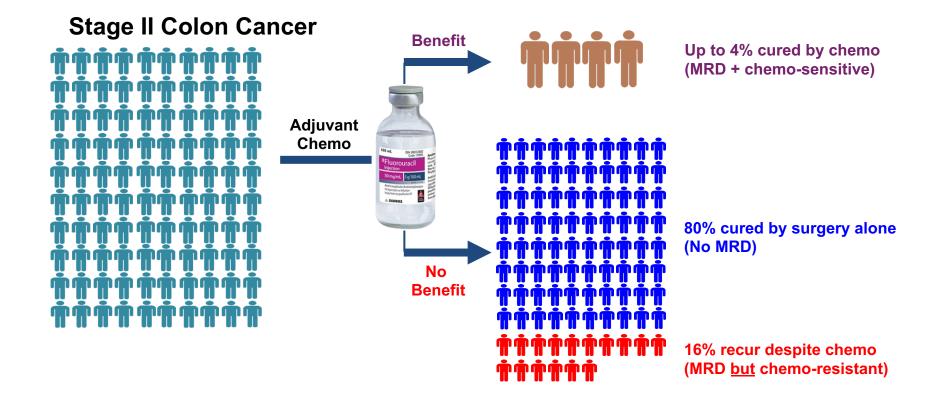
Individual responses to PD-1 blockade with dostarlimab

Patients who completed 6-months of dostarlimab

ID	Age	Stage T	Stage N	FU (months)	Digital rectal exam response	Endoscopic best response	Rectal MRI best response	Overall response
1	38	T4	N+	23.8	CR	CR	CR	cCR
2	30	T3	N+	20.5	CR	CR	CR	cCR
3	61	T1/2	N+	20.6	CR	CR	CR	cCR
4	28	T4	N+	20.5	CR	CR	CR	cCR
5	53	T1/2	N+	9.1	CR	CR	CR	cCR
6	77	T1/2	N+	11.0	CR	CR	CR	cCR
7	77	T1/2	N+	8.7	CR	CR	CR	cCR
8	55	T3	N+	5.0	CR	CR	CR	cCR
9	68	T3	N+	4.9	CR	CR	CR	cCR
10	78	T3	N-	1.7	CR	CR	CR	cCR
11	55	T3	N+	4.7	CR	CR	CR	cCR
12	27	T3	N+	4.4	CR	CR	CR	cCR
13	26	T3	N+	0.8	CR	CR	CR	cCR
14	43	T3	N+	0.7	CR	CR	CR	cCR

Duration of response

My Conclusions for Neoadjuvant IO Therapy in MSI-H/dMMR colorectal cancer


- Upfront, definitive IO therapy has emerged as SOC in MSI-H/ dMMR rectal cancer
 - Hard to beat 14/14 cCR...
 - FOLFOX does not work well, if at all
 - Matches results in advanced disease and consistent with prior studies
- But:
 - Follow up still short (median: 6.8 mos)
 - What is the best IO therapy? PD-1 single agent? Combo?
 - Will it always lead to NOM? Role of radiation?
- In locally advanced MSI-H/ dMMR colon cancer, I would also favor IO therapy as neoadjuvant treatment

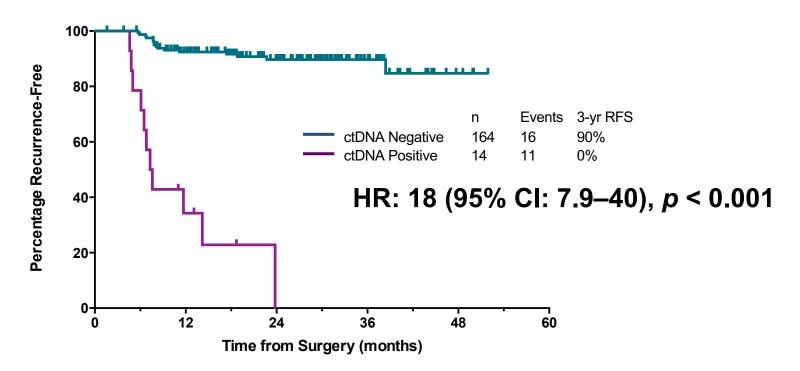
Role of ctDNA MRD in Management of Early Stage Colon Cancer?

Clinical Applications for ctDNA

The Crux of Adjuvant Therapy: Treat Many to Save a Few

ctDNA as Marker for MRD (molecular residual disease)

Two main types of tests:


- Tumor-agnostic, Disease-specific
 - NGS or PCR panel of common mutations in CRC
 - Methylation markers

Pro: easy logistics; Con: lower sensitivity

- Tumor-informed, Disease-agnostic
 - NGS or PCR panel of mutations detected in patient's primary tumor

Pro: high sensitivity; Con: logistics more complicated

Stage II Recurrence-Free Survival (Patients <u>not</u> treated with chemotherapy)

Adjuvant Chemotherapy Guided by Circulating Tumor DNA Analysis in Stage II Colon Cancer

The Randomized DYNAMIC Trial

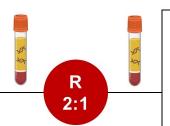
Jeanne Tie

Peter MacCallum Cancer Centre and Walter & Eliza Hall Institute of Medical Research, Melbourne, Australia

On behalf of the DYNAMIC Investigators

Joshua Cohen, Kamel Lahouel, Serigne Lo, Yuxuan Wang, Rachel Wong, Jeremy Shapiro, Samuel Harris, Adnan Khattak, Matthew Burge, Marion Harris, James Lynam, Louise Nott, Fiona Day, Theresa Hayes, Nickolas Papadopoulos, Cristian Tomasetti, Kenneth Kinzler, Bert Vogelstein, Peter Gibbs

DYNAMIC Study Design


ACTRN12615000381583

Non-inferiority trial!

Stage II **Colon Cancer**

- R0 resection
- ECOG 0 2
- Staging CT within 8 weeks
- Provision of adequate tumor tissue within 4 weeks post-op
- No synchronous colorectal cancer

Plasma Collections Week 4 + 7 post-op

ctDNA-Guided Management

- ctDNA-Positive → Adjuvant Chemo (oxaliplatin-based or single agent FP)
- ctDNA-Negative → Observation

ctDNA-Positive = Positive result at week 4 and/or 7

Standard Management

Adjuvant treatment decisions based on conventional clinico-pathologic criteria

Endpoints

Primary

RFS rate at 2 years

Key Secondary

Proportion receiving adiuvant chemo

Secondary

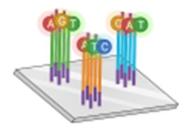
- RFS by ctDNA status for ctDNA-quided arm
- TTR
- OS

Stratification Factors

- T stage (T3 vs T4)
- Type of participating center (metropolitan vs regional)

Surveillance:

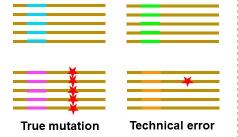
- CEA \rightarrow 3-monthly for 24M, then 6-monthly for 36M
- CT C/A/P \rightarrow 6-monthly for 24M, then at 36M


ctDNA Analysis: Tumor-Informed Personalized Approach

Resected tumor tissue

FFPE tissue from primary tumor

Targeted sequencing identifies mutation(s) unique to that cancer


15 recurrently mutated genes in colorectal cancer

(APC, TP53, KRAS, PIK3CA, FBXW7, BRAF, SMAD4, RNF43, POLE, CTNNB1, ERBB3, NRAS, PPP2R1A, AKT1, HRAS)

At least one patientspecific mutation assessed in plasma

ctDNA detection by Safe-Sequencing System*

(error reduction technology designed to detect low frequency mutations using unique molecular identifier)

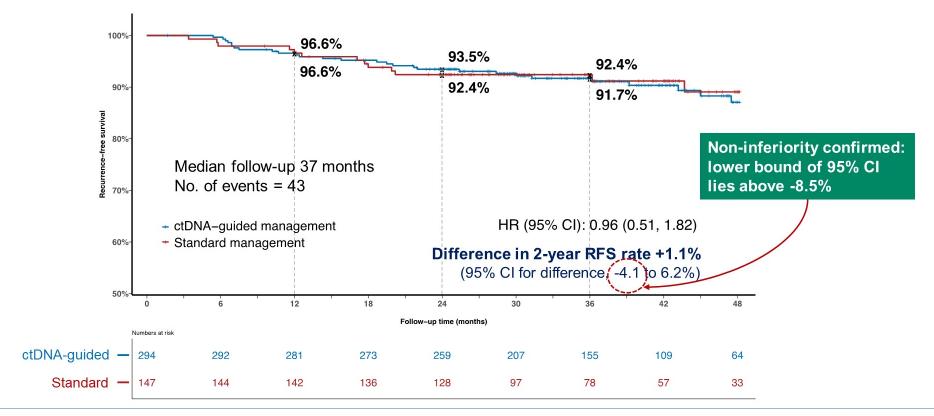
*Kinde et al. Proc Natl Acad Sci U S A. 2011;108(23):9530-5

Baseline Characteristics

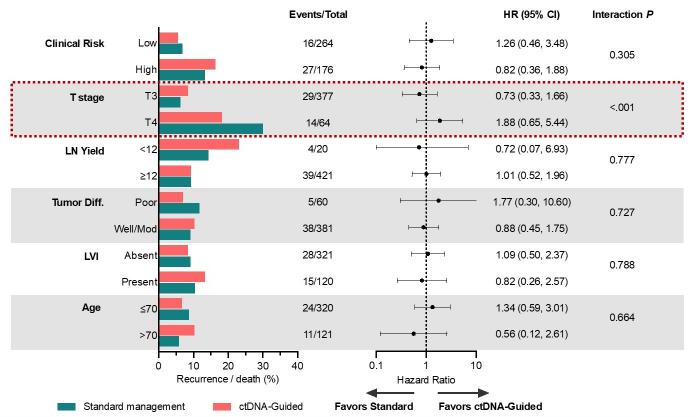
Characteristics	ctDNA-Guided Management N = 294, N (%)	Standard Management N = 147, N (%)	
Age, median (range), years	65 (30 , 94)	62 (28 , 84)	
Sex, Male	154 (52)	81 (55)	
ECOG, 0	226 (77)	124 (84)	
Center type, metropolitan	240 (82)	121 (82)	
Primary tumor site, left-sided	126 (43)	78 (53)	
Tumor stage, T3	250 (85)	127 (86)	
Tumor differentiation, poor	43 (15)	17 (12)	
Lymph node yield, < 12	13 (4)	7 (5)	
Lymphovascular invasion, present	82 (28)	38 (26)	
MMR, deficient	59 (20)	27 (18)	
Clinical risk group, high*	116 (40)	60 (41)	

^{*}High clinical risk = proficient MMR + ≥1 high-risk feature (T4, poor tumor differentiation, <12 lymph node yield, LVI, tumor perforation and/or bowel obstruction)

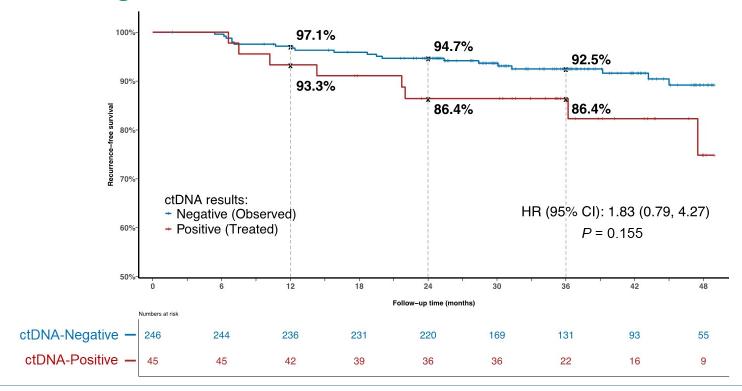
Adjuvant Treatment Delivery


Treatment Information	ctDNA-Guided N = 294	Standard Management N = 147	P-value
Adjuvant Chemotherapy received, n	45 (15%)	41 (28%)	0.0017
Chemotherapy regimen received, n Oxaliplatin-based doublet Single agent fluoropyrimidine	28/45 (62%) 17/45 (38%)	4/41 (10%) 37/41 (90%)	<.0001
Time from surgery to commencing chemotherapy, median (IQR), days	83 (76, 89)	53 (49, 61)	<.0001
Treatment duration, median (IQR), weeks	24 (19, 24)	24 (21, 24)	0.9318
Completed planned treatment, n	38 (85%)	32 (78%)	0.7036
Percentage of full dose delivered, median (IQR)	78 (56, 100)	84 (64, 100)	0.6194

Recurrence-Free Survival



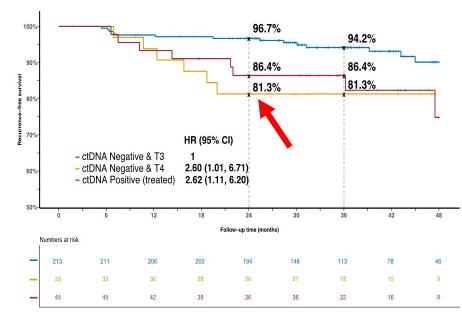
Recurrence-Free Survival in Key Subgroups



Recurrence-Free Survival: ctDNA-Guided Management

ctDNA Negative vs Positive





Recurrence-Free Survival: ctDNA-Guided Management ctDNA, Clinical Risk and T Stage

ctDNA and Clinical Risk

ctDNA and T Stage

ASCO Gastrointestinal Cancers Symposium

Association of circulating tumor DNA dynamics with clinical outcomes in the adjuvant setting for patients with colorectal cancer from an observational GALAXY study in CIRCULATE-Japan

Masahito Kotaka

Gastrointestinal Cancer Center, Sano Hospital, Kobe, Japan

Co-authors; Hiromichi Shirasu, Jun Watanabe, Kentaro Yamazaki, Keiji Hirata, Naoya Akazawa, Nobuhisa Matsuhashi, Mitsuru Yokota, Masataka Ikeda, Kentaro Kato, Alexey Aleshin, Shruti Sharma, Daisuke Kotani, Eiji Oki, Ichiro Takemasa, Takeshi Kato, Yoshiaki Nakamura, Hiroya Taniquchi, Masaki Mori, Takayuki Yoshino

On behalf of the CIRCULATE-Japan Investigators

CONSORT diagram

1,564 patients enrolled between Jun 5, 2020 and Apr 30, 2021

Excluded (N=524)

- Enrolled in associated interventional phase III trials (N=289)
- Incomplete filling of pathological stage into EDC (N=101)
- Incomplete resection (N=15)
- Confirmed pStage 0 (N=3)
- Post-op-4w ctDNA result was not available (N=110)
- Withdrawal of informed consent (N=6)

Data cutoff: Nov 19, 2021

1,040 patients were included in this analysis (Outcome cohort)

Excluded (N=202)

- Post-op-12w ctDNA result was not available (N=157)
- Recurrence within 12 weeks (N=45)

Dynamics analysis cohort (N=838)

Post-op-4w ctDNA Positive (N=188)

Excluded (N=5)

 Post-op-12w ctDNA result was not available (N=5)

Clearance analysis cohort (N=183)

Post-op-4w ctDNA Negative (N=852)

Excluded (N=321)

- Confirmed pStage I (N=95)
- Confirmed Low-risk pStage II (N=66)
- Confirmed pStage IV (N=160)

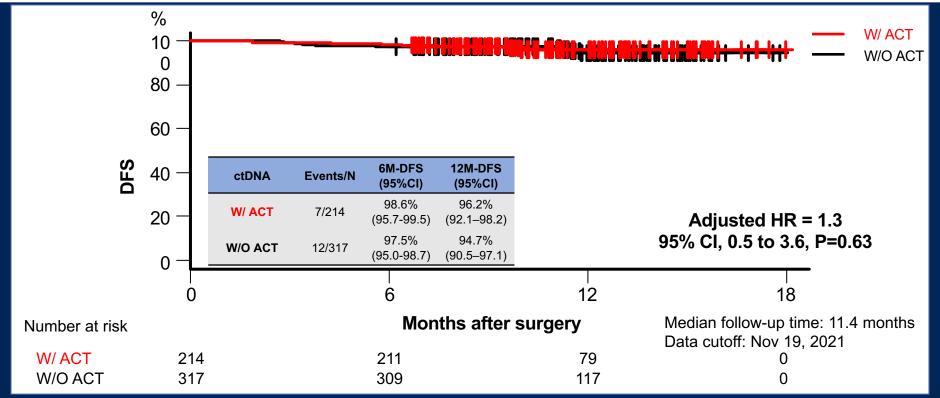
ctDNA Negative cohort (N=531)

op, operation; EDC, Electronic data

Patient characteristics in ctDNA negative cohort

	Patients W/ ACT (N=214)		Patients W/O ACT (N=317)		Р
Sex					
Male/Female	106/108	50%/50%	159/158	50%/50%	0.93
Performance status					
0/1	196/18	92%/8%	258/59	81%/19%	0.001
pStage ¹					
pStage II (high-risk)	37	17%	188	59%	<0.001
pStage III	177	83%	129	41%	\0.001
ACT regimen: FP+Oxa / FP					
FP+Oxa / FP (High-risk pStage II)	24/13	65%/35%	-	-	-
FP+Oxa / FP (pStage III)	152/25	86%/14%	-	-	-

FP, fluoropyrimidine; Oxa, oxaliplatin; ACT, adjuvant chemotherapy; Comparisons between categorical variables were performed by Fisher's exact test. High-risk Stage II is defined as having at least one of the following risk factors: (a) T4 (SE/SI/AI), (b) intestinal tract obstruction (clinical), (c) intestinal tract perforation/penetration (clinical), (d) less than 12 dissected lymph nodes, (e) poorly differentiated adenocarcinoma, signet-ring cell carcinoma, or mucinous carcinoma, (f) positive for lymphatic invasion, venous invasion, or neuroinvasion.


1. Sobin LH,et al. International Union Against Cancer (UICC): TNM Classification of Malignant Tumours. 8th ed. Oxford: Wiley-Blackwell (2017)

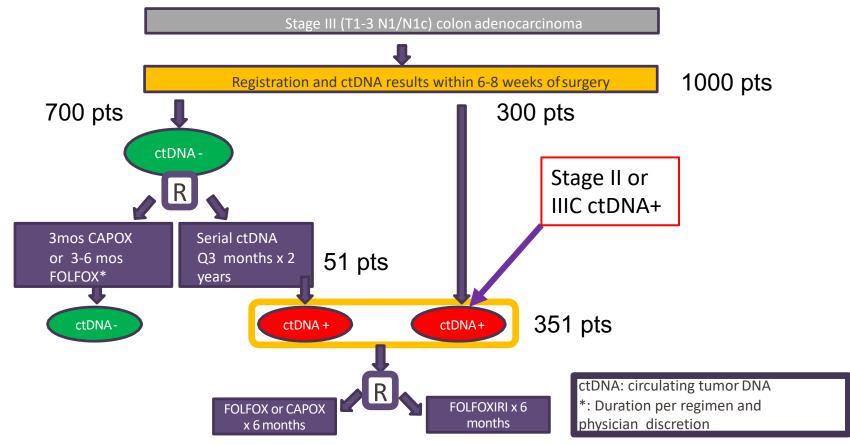
DFS by ACT in post-op-4w ctDNA negative population (High-risk pStage II-III)

HR was adjusted by age, performance status, pStage, and MSI status that are imbalanced between two groups.

ACT, adjuvant chemotherapy; DFS, disease-free survival; HR, hazard ratio; CI, confidential interval.

DFS curve was estimated by the Kaplan-Meier method. HR and 95%CI were calculated by the Cox proportional hazard model.

What do we know about ctDNA in 2022?

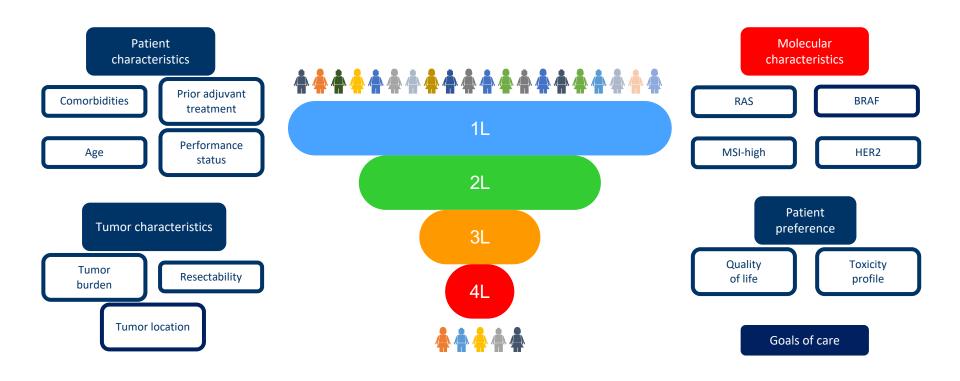

- 1. The persistent presence of ctDNA after surgical resection is the strongest poor prognostic factor we have ever identified
 - It is more important than T and/ or N stage
- 2. Adjuvant therapy can decrease the likelihood for cancer recurrence in ctDNA positive cases
 - ctDNA positivity is not a "point of no return"
- 3. ctDNA kinetic is early marker of treatment response
 - Validated for immunotherapy

What don't we know about ctDNA in 2022?

- 1. Can we use sequential ctDNA monitoring and only use "adjuvant therapy" when the ctDNA test turns positive? Would this compromise outcome?
- 2. Can we de-escalate the intensity or duration of adjuvant therapy in ctDNA negative cases? are DYNAMIC II and CIRCULATE-Japan definitive for e.g. T4 N0 cancers?
- 3. Will ctDNA positive cases benefit from an escalation of the intensity or duration of adjuvant therapy? Can molecular targeted approaches be helpful in these cases?
- 4. Can we forgo routine surveillance scans in lieu of serial ctDNA monitoring?
- 5. Can ctDNA conversion be used as an endpoint for adjuvant trials?
- 6. Can ctDNA help predict or define the benefit or lack of benefit of local therapies?
- 7. Can ctDNA help us define the duration of immunotherapy when patients have reached a state of NED?

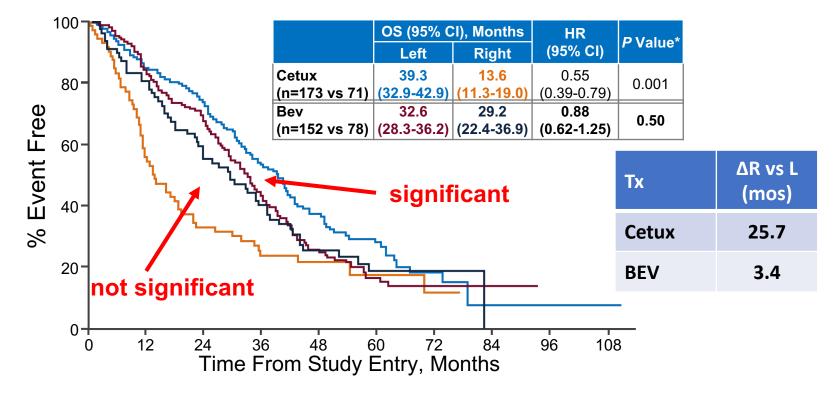
Various prospective clinical studies are addressing these issues
-> results of randomized trials expected in next 5-10 years - might be too late!

NRG GI-008 (CIRCULATE-US) Trial – Activated 03/2022


Co-Pls: C Lieu, T George

Optimized first-line therapy of mCRC in 2022

Overview of Precision Medicine Approaches in GI Cancers


GI Cancer	Negative predictive markers	Positive predictive markers	Cancer-agnostic markers
Gastroesophageal		HER-2 PD-L1 FGFR2 Claudin	
CRC	RAS mutations BRAF V600E Sidedness HER2	HER-2 BRAF V600E KRAS G12C	MSI-H/ dMMR NTRK fusions POLe/d
Biliary cancers (IHCC!)		IDH-1 FGFR fusions HER-2 BRAF V600E mut	TMB? RET fusions? NRG-1 fusions?
Pancreas cancer		BRCA (-like) NRG-1 fusions	
HCC		(AFP high)	

What influences treatment choices in mCRC?

Therapy tailored according to individual patient needs

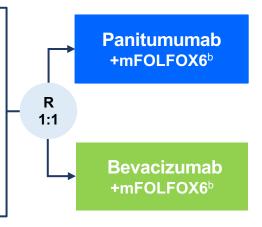
CALGB/SWOG 80405: OS by Tumor Location (*RAS* WT)

^{*}Adjusted for biologic, protocol CT, prior adjuvant therapy, prior RT, age, sex, synchronous disease, in place primary, liver metastases. Venook A, et al. Presented at: ESMO. 2016.

Panitumumab plus mFOLFOX6 versus Bevacizumab plus mFOLFOX6 as first-line treatment in patients with *RAS* wild-type metastatic colorectal cancer: results from the phase 3 PARADIGM trial

<u>Takayuki Yoshino¹</u>, Jun Watanabe², Kohei Shitara¹, Kentaro Yamazaki³, Hisatsugu Ohori⁴, Manabu Shiozawa⁵, Hirofumi Yasui⁴, Eiji Oki⁶, Takeo Sato⁷, Takeshi Naitoh՞, Yoshito Komatsu⁶, Takeshi Kato¹⁰, Masamitsu Hihara¹¹, Junpei Soeda¹¹, Kouji Yamamoto¹², Kiwamu Akagi¹³, Atsushi Ochiai¹⁴, Hiroyuki Uetake¹⁵, Katsuya Tsuchihara¹⁶, Kei Muro¹⁷

¹Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan; ²Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan; ³Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan; ⁴Division of Medical Oncology, Japanese Red Cross Ishinomaki Hospital, Miyagi, Japan; ⁵Division of Gastrointestinal Surgery, Kanagawa Cancer Center, Kanagawa, Japan; ⁴Department of Surgery and Science, Graduate School of Medicial Sciences, Kyushu University, Fukuoka, Japan; ¹Research and Development Center for Medical Education, Department of Clinical Skills Education, Kitasato University School of Medicine, Sagamihara, Japan; ⁴Division of Cancer Chemotherapy, Hokkaido University Hospital Cancer Center, Sapporo, Japan; ¹¹Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan; ¹¹Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Ltd., Tokyo, Japan; ¹²Department of Biostatistics, Yokohama City University School of Medicine, Yokohama, Japan; ¹³Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan; ¹⁴Pathology Division, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan; ¹⁵National Hospital Organization, Disaster Medical Center, Tokyo, Japan; ¹⁵Division of Translational Informatics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan; ¹⁵Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan


PARADIGM Trial Design

Phase 3, randomized, open-label, multicenter study (NCT02394795)

Patients with RAS WT mCRC

- Unresectable disease
- No previous chemotherapy^a
- Age: 20–79 years
- ECOG performance status 0–1
- At least 1 evaluable lesion
- Adequate organ function
- Life expectancy ≥ 3 months

N = 823

Primary endpoint

 OS: left-sided^c population; if significant, analyzed in overall population

Secondary endpoints

- PFS, RR, DOR, R0 resection: left-sided^c and overall populations
- Safety: all treated patients

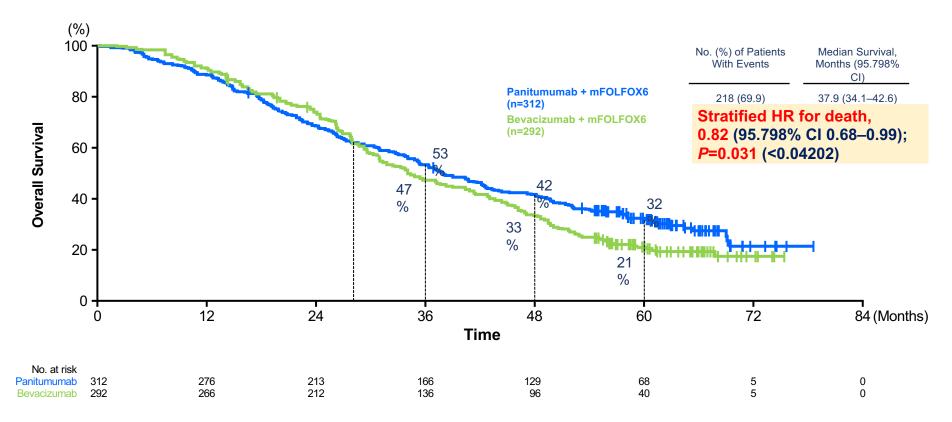
Exploratory endpoints

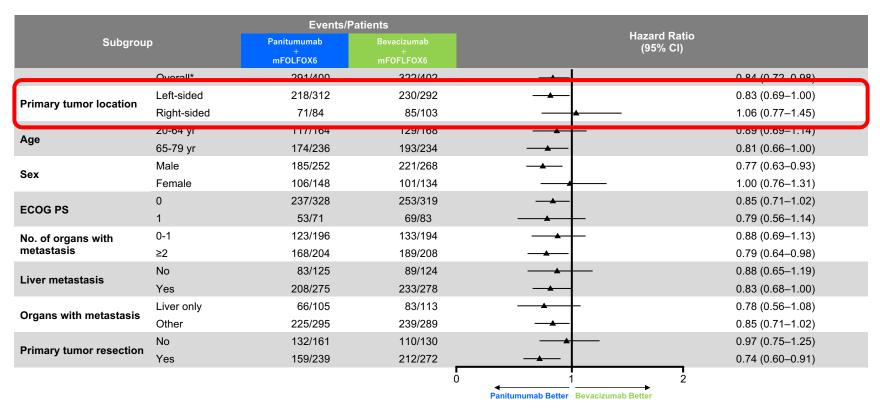
 ETS, depth of response, DCR: left-sided^c and overall populations

Stratification factors

- Institution
- Age: 20–64 vs 65–79 years
- Liver metastases: present vs absent

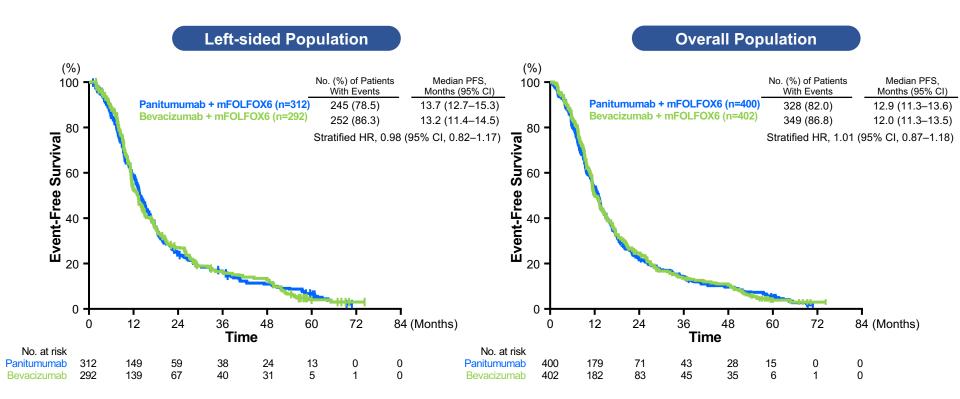
DCR, disease control rate; DOR; duration of response; ECOG, Eastern Cooperative Oncology Group; ETS, early tumor shrinkage; mCRC, metastatic colorectal cancer; OS, overall survival; PFS, progression free survival; RR, response rate; R0, curative resection; WT, wild type.


^aAdjuvant fluoropyrimidine monotherapy allowed if completed > 6 months before enrollment. ^bUntil disease progression, unacceptable toxicity, withdrawal of consent or investigator's judgement or curative intent resection. ^cPrimary tumor in descending colon, sigmoid colon, rectosigmoid, and rectum.


Primary Endpoint-1; Overall Survival in Left-sided Population

Subgroup Analyses of Overall Survival in Overall Population

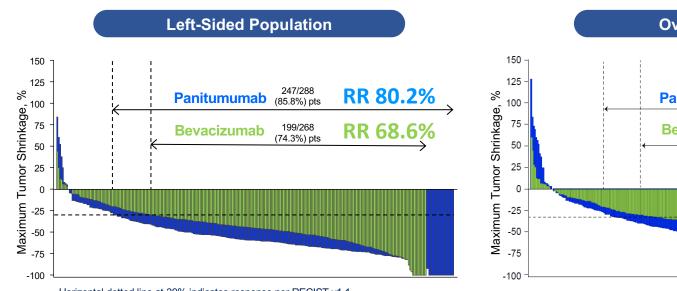
^{*}Stratified Hazard Ratio is shown with 95% Cl.

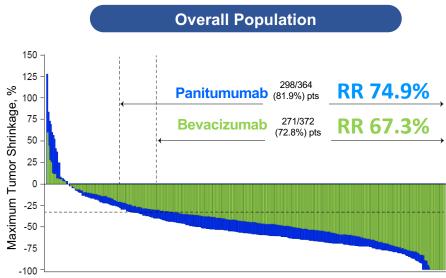


PRESENTED BY:

Takavuki YOSHINO, MD, PhD

Progression-free Survivala



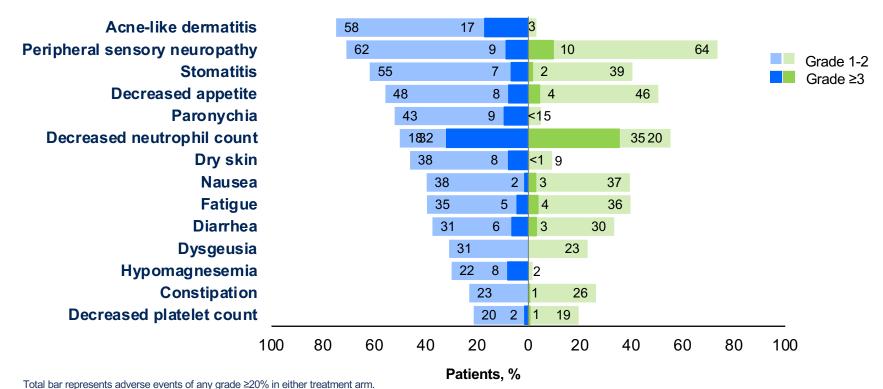

^aPatients who underwent curative-intent resection were censored at the last tumor evaluable assessment date before the resection.

Other Efficacy Outcome: Depth of Response

Horizontal dotted line at 30% indicates response per RECIST v1.1.

	Left-sided Population		Overall Population	
	Panitumumab + mFOLFOX6 (n=288)	Bevacizumab + mFOLFOX6 (n=268)	Panitumumab + mFOLFOX6 (n=364)	Bevacizumab + mFOLFOX6 (n=372)
Median, %	-59.4	-43.6	-57.3	-43.6

Depth of response was assessed in patients with measurable lesions at baseline.



Adverse Events Reported in ≥ 20% of Patients

Panitumumab + mFOLFOX6 Bevacizumab + mFOLFOX6

FOLFOXIRI + bevacizumab vs FOLFOX/FOLFIRI + bevacizumab in patients with initially unresectable colorectal liver metastases and right-sided and/or *RAS/BRAF*^{V600E} mutated primary tumor

Randomized phase III CAIRO5 study of the Dutch Colorectal Cancer Group

Cornelis J.A. Punt^{1,2}, M.J.G. Bond, K. Bolhuis, O.J.L. Loosveld, H.H. Helgason, J.W.B. de Groot, M.P. Hendriks, E.D. Kerver, M.S.L. Liem, A.M. Rijken, C. Verhoef, J.H.W. de Wilt, K.P. de Jong, G. Kazemier, M.J. van Amerongen, M.R.W. Engelbrecht, J.M. Klaase, A. Komurcu, M.I. Lopez-Yurda, R.J. Swijnenburg

¹ Julius Centre for Health Sciences and Primary Care, dept. of Epidemiology, University Medical Center Utrecht

² Amsterdam University Medical Center, dept. of Medical Oncology, The Netherlands

CAIRO5 - study design

Unresectability at baseline: not resectable by surgery-only in one stage Initially unresectable CRLM

PANEL EVALUATION: confirm unresectability

> RAS / BRAFV600E mutated and/or

right-sided primary

Stratification parameters:

- potentially resectable vs permanently unresectable (panel)
- serum LDH (normal vs abnormal)
- BRAF^{V600E} mutation (yes vs no)
- choice oxaliplatin vs irinotecan

Statistics:

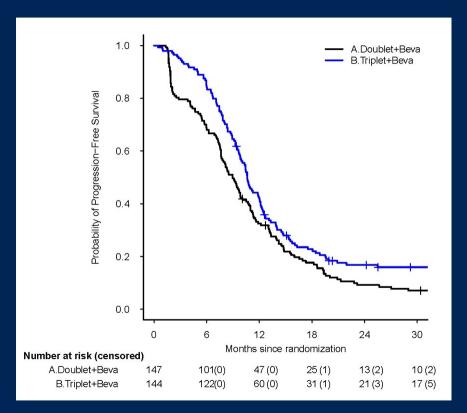
257 events, HR 0.70 for PFS 80% power 2-sided log-rank test at 5%, assuming median PFS of 8.7 months for doublet chemo+bevacizumab

FOLFOX or FOLFIRI by patient preference

All established local treatments allowed (i.e. ablation, 2-stage surgery, portal vein embolization)

PANEL EVALUATION every 2 months for resectability assessment

FOLFOXIRI +


bevacizumab

FOLFOX/FOLFIRI

+ bevacizumab

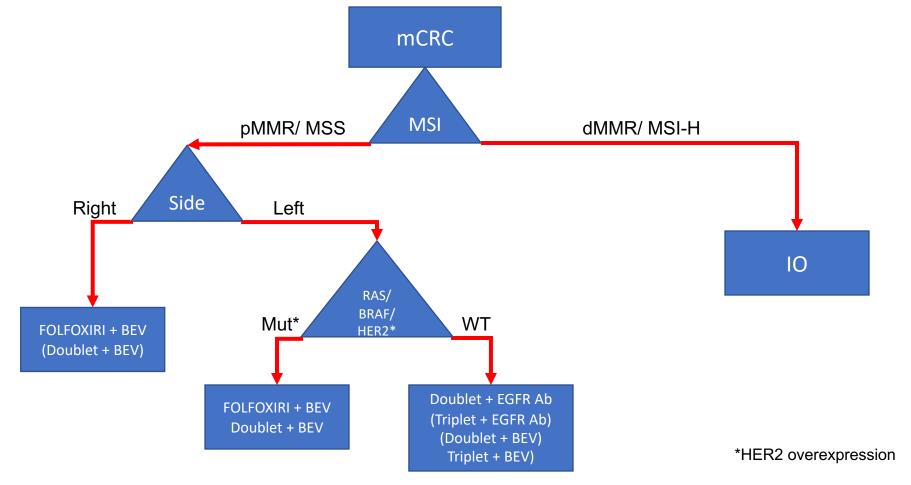
CAIRO5 – progression-free survival

Median follow up 41 months

FOLFOX/FOLFIRI + bevacizumab 9.0 months FOLFOXIRI + bevacizumab 10.6 months

HR 0.77, 95% CI 0.60-0.99, p=0.038

Data on overall survival not yet mature


CAIRO5 – local treatment

	FOLFOX/FOLFIRI + beva	FOLFOXIRI + beva	
n	147	144	
Resection +/- ablation rate postoperative complications Clavien Dindo grade ≥3 grade 5 (death)	46% 40% 15% 0%	57% 51% 27% 2% (n=3)	p=0.08 p=0.19 p=0.08
Number of induction cycles (median, range)	7 (4-12)	6 (2-12)	
Adjuvant chemotherapy	38%	45%	
Number of adjuvant cycles (median, range)	6 (1-8)	4 (1-8)	
R0/1 resection +/- ablation rate 2-stage surgery +/- PVE	37% 16%	51% 32%	p=0.02 p=0.04

Optimized first-line therapy for mCRC

The Present and the Future

Where we are now		Where we will go		
Early stage colon cancer				
Adjuvant therapy	Duration and intensity based on traditional TNM staging	 ctDNA as MRD marker to select patients for adjuvant therapy to identify high-risk patients with distinct 		
	No targeted agents or immunotherapy	molecular profile for targeted interventionto serve as endpoint in adjuvant trials		
Advanced CRC				
Palliative therapy	Chemotherapy as backbone	 Identify more patients suitable for targeted therapie Characterize markers of secondary resistance 		
	Targeted agents based on molecular profile and sidedness	 Immunotherapy for MSS/ pMMR cancers Define the role of tumor microbiota in oncogenesis 		
	Immunotherapy only for MSI-H/ dMMR cancers	 as prognostic and predictive marker as target for therapeutic intervention 		

The Present and the Future

Where we are now		Where we will go			
Early stage rectal cancer					
Neo-Adjuvant therapy	Ongoing shift from radio- chemotherapy followed by surgery and post-op adj Tx to TNT	 Firm establishment of TNT as SOC Best sequencing strategy TBD ? SCRT vs LC-chemo-rads 			
	Increased use of short- course radiation therapy				
	Even in cCR surgery considered SOC	 Non-operative management as SOC in suitable cases Role of imaging, endoscopy and serial ctDNA testing to monitor response and in follow-up TBD 			
	Molecular markers largely ignored for treatment decisions	Neoadjuvant or definitive IO therapy is SOC in dMMR/MSI-H rectal cancers			