Master Lecture Series: ER+/Her2- breast cancer

Virginia F. Borges, MD, MMSc Professor of Medicine with Tenure Deputy Head, Division of Medical oncology Director, Breast Cancer Research Program

Objectives

- Understand the current controversies for ER+, Her2- young women's breast cancer in the early stage
- Identify the current algorithm of treating ER+, Her2- MBC
- Review recent update on current standard of care and emerging novel therapies
- Identify how to incorporate the latest updates into your clinic

Timeline of initial novel drug approvals for HR+ HER 2- metastatic breast cancer

Friday afternoon in clinic....

35-year-old woman presents for consultation for her metastatic breast cancer

Breast Cancer History:

2 weeks ago, presented with L breast mass Stage II/prognostic stage I [T2N1M0] Grade 2, Ki-67 20% ER 60%, PR 20%, Her 2 IHC 0% No identified gene mutation

Friday afternoon in clinic....

35-year-old woman presents for consultation for her metastatic breast cancer

Breast Cancer History:

2 weeks ago, presented with L breast mass Stage II/prognostic stage I [T2N1M0] Grade 2, Ki-67 20% ER 60%, PR 20%, Her 2 IHC 0%

Surgery first?
Oncotype?
Neoadjuvant or adjuvant chemo?
Other things to remember?

RxPONDER: A Clinical Trial Rx for Positive Node, Endocrine Responsive Breast Cancer

First results from a phase III randomized clinical trial of standard adjuvant endocrine therapy +/- chemotherapy in patients (pts) with 1-3 positive nodes, hormone receptor-positive (HR+) and HER2-negative breast cancer with recurrence score of 25 or less: SWOG S1007

Kevin Kalinsky, William E Barlow, Funda Meric-Bernstam, Julie R Gralow, Kathy S Albain, Daniel F Hayes, Nancy U Lin, Edith A Perez, Lori J Goldstein, Stephen K Chia, Sukhbinder Dhesy-Thind, Priya Rastogi, Emilio Alba, Suzette Delaloge, Miguel Martin, Miguel Gil Gil, Claudia Arce-Salinas, Etienne Brain, In Hae Park, Jean-Yves Pierga, Ana Lluch, Manuel Ramos Vazquez, Manuel Ruiz Borrego, Kyung Hae Jung, Jean-Marc Ferrero, Anne Schott, Steve Shak, Priyanka Sharma, Danika L Lew, Jieling Miao, Debu Tripathy, Gabriel N Hortobagyi, Lajos Pusztai

RxPONDER Schema

Key Entry Criteria

- Women age ≥ 18 yrs
- ER and/or PR ≥ 1%, HER2- breast cancer with 1*-3 LN+ without distant metastasis
- Able to receive adjuvant taxane and/or anthracycline-based chemotherapy**
- Axillary staging by SLNB or ALND

- * After randomization of 2,493 pts, the protocol was amended to exclude enrollment of pts with pN1mic as only nodal disease.
- ** Approved chemotherapy regimens included TC, FAC (or FEC), AC/T (or EC/T), FAC/T (or FEC/T). AC alone or CMF not allowed. ALND = Axillary Lymph Node Dissection, SLNB = Sentinel Lymph Node Biopsy

Baseline Characteristics by Menopausal Status

Baseline variable	Postmenopausal (n=3,350)	Premenopausal (n=1,665)	Overall (n=5,015)
Age group			
< 40 years	0.2%	8.5% [141]	2.9%
40-49 years	1.9%	60.8%	21.5%
50-59 years	34.9%	30.5%	33.4%
60-69 years	45.7%	0.2%	30.6%
70+ years	17.3%	0%	11.6%
Recurrence Score			
RS 0-13	44.8%	38.7%	42.8%
RS 14-25	55.2%	61.3%	57.2%
Nodal Dissection			
Full ALND	60.7%	66.4%	62.6%
Sentinel nodes only	39.3%	33.6%	37.4%
Positive Nodes			
1 node	65.6%	65.3%	65.5%
2 nodes	25.1%	25.7%	25.3%
3 nodes	9.3%	9.0%	9.2%
Grade			
Low	26.0%	22.0%	24.7%
Intermediate	63.5%	68.3%	65.1%
High	10.6%	9.7%	10.3%
Tumor size			
T1	59.1%	56.2%	58.1%
T2/T3	41.9%	43.9%	41.9%

IDFS premenopausal women

Premenopausal

IDFS Event	CET	ET	Total (%)
Distant	26	50	76 (54%)
Local-Regional	8	17	25 (18%)
Contralateral	4	8	12 (8%)
Non-Breast Primary	10	10	20 (14%)
Recurrence Not Classified	1	1	2 (1%)
Death not due to Recurrence or Second Primary	2	5	7 (5%)

Absolute Difference in Distant Recurrence as 1st site: 2.9% (3.1% CET vs. 6.0% ET)

Forest Plots of IDFS Premenopausal Women

Landmarked Exploratory Analysis for IDFS in Premenopausal Women on Endocrine Therapy arm:

Ovarian Function Suppression (n=126) vs. no Ovarian Function Suppression (n=647) at 6 months: HR 0.73 (95% CI: 0.39-1.37), p=0.33

IDFS Stratified by Recurrence Score Premenopausal Status

Premenopausal

RS 0-13

RS 14-25

Premenopausal women with RS 0-25 had benefit from the addition of chemotherapy to endocrine therapy

46% decrease in IDFS events; benefit was observed across premenopausal subgroups

53% decrease in deaths, leading to a 5-year OS absolute improvement of 1.3%

1 node v 2-3 nodes – equal benefit at ~5% benefit

IDFS Stratified by Recurrence Score Premenopausal Status

Premenopausal

Premenopausal women with RS 0-25 had benefit from the addition of chemotherapy to endocrine therapy

46% decrease in IDFS events; benefit was

✓ Premenopausal women with positive nodes and RS 0-25 likely benefit significantly from chemotherapy

CET 5-year IDFS 92.8%

ET 5-year IDFS 86.6%

CET (N=523; 41 events)

ET (N=497; 66 events)

Adjusted HR = 0.57; 95% CI 0.39-0.84; p=0.005

S-year IDFS Absolute Difference 6.2%

Number at risk

CET 523 479 447 395 333 289 171 77 23 1

ET 497 450 415 354 314 247 140 51 15 0

absolute improvement of 1.3%

1 node v 2-3 nodes – equal benefit at ~5% benefit

RS 14-25

- What factors are worth considering?
 - What's the biology? Who's the patient?
 - What is the expected benefit of the chemotherapy?
 - What does optimized hormonal therapy look like?

Original Research

Chemotherapy-induced ovarian failure in young women with early breast cancer: Prospective analysis of four randomised neoadjuvant/adjuvant breast cancer trials

Supplementary Figure 2. Time to regain of premenopausal hormone levels (actual time)

Furlanetto et al, EJC 2021

- Patients under age 45
- 85% experienced CIA at EOT
- Of those, 89% regained premenopausal hormone levels

• 6 Months: 33%

• 12 Months: 58%

• 18 Months: 83%

• 24 Months: 89%

Articles

Ovarian ablation in early breast cancer: overview of the randomised trials

Early Breast Cancer Trialists' Collaborative Group*

- Early review of trials randomizing ovarian ablation/suppression vs none (N=2012)
- ~13% absolute benefit for DFS

Figure 3: Absolute effects of ovarian ablation in absence of routine chemotherapy in all trials combined among women aged under 50 at entry

Optimized antiendocrine therapy

- Hormone blocking therapy is the best treatment for HR+ BC
- Combination therapy has shown improved outcomes, especially for very young women, node + disease and 'high-risk'

TEXT and SOFT Trials: Comparison of Tamoxifen or Exemestane With OFS

Pagani O, et al. ASCO 2014. Abstract LBA1.

SOFT 8-Year Update: T+OFS Significantly Improves DFS vs. T-Alone; Exemestane Adds More Benefit

Distant Recurrence-free Interval by Cohort (HR+/HER2-)

ABCSG 12 Trial:

- Accrual 1999-2006
- 1800 premenopausal patients
- Stage I and II, <10 positive nodes, ER+ and/or PgR+

ABCSG 12 = Austrian Breast and Colorectal Cancer Study Group 12; BMD = bone mineral density; CT = chemotherapy; ER+ = estrogen receptor-positive; PgR+ = progesterone receptor-positive; RT = radiation therapy.

Reproduced with permission from Gnant M et al. Presented at: 27th Annual San Antonio Breast Cancer Symposium; December 8-11, 2004; San Antonio, Tex.

Friday afternoon in clinic....

35-year-old woman presents for consultation for her metastatic breast cancer

Breast Cancer History:

2 weeks ago, presented with L breast mass Stage II/prognostic stage I [T2N1M0] Grade 2, Ki-67 22% ER 60%, PR 20%, Her 2 IHC 0%

Oncotype was 22 Neoadjuvant chemo with AC-T Other things to remember?

Fertility Issues

- If a women has never been pregnant, her fertility status is an unknown
 - Fertility declines after age 35, normally
- Modern chemotherapy regimens less frequently alter fertility than older ones
 - Delay of therapy for egg harvesting
 - Oocytes/ovarian tissue if NO Acceptable Sperm on hand.
- Post treatment pregnancy does NOT increase breast cancer recurrence risk [awaiting the POSITIVE trial data at SABCS 2022]
- Right now, is a REALLY BAD TIME for pregnancy, so fertility must be controlled in a definitive manner.

monarchE Study Design

^a Recruitment from July 2017 to August 2019. ^b Endocrine therapy of physician's choice (eg, aromatase inhibitors, tamoxifen, LHRH agonist). ^c Ki-67 expression centrally assessed in all patients from both cohorts with suitable untreated breast tissue using Ki-67 immunohistochemistry.

O'Shaughnessy J et al. 2021 ESMO. Abstract VP8-2021; Harbeck N et al. Ann Oncol. 2021; 32(12):1571-1581.

monarchE: IDFS in ITT Ki-67 High (≥ 20%) Population

33.7% reduction in the risk of developing an IDFS event The absolute difference in IDFS rates between arms was 6.0% at 3 years

O'Shaughnessy J et al. 2021 ESMO. Abstract VP8-2021; Harbeck N et al. Ann Oncol. 2021; 32(12):1571-1581.

monarchE
IDFS and DDFS
following
neoadjuvant
chemotherapy

Preliminary OS Results

ITT Population

Ki-67 High Population

Comparable number of deaths in both study arms (3.4% vs 3.2%)

Harbeck N et al. Ann Oncol. 2021;32(12):1571-1581.

Friday afternoon in clinic....

38-year-old woman presents for consultation for her metastatic breast cancer

Breast Cancer History:

5 years ago, presented with L breast mass, BRCA2+ Stage III [T3N1M0]

Grade 2, Ki-67 19% ER 60%, PR 40%, Her 2 IHC 0%

AC-T neoadjuvant chemo Bilateral mastectomies with reconstruction ypT1c,ypN1 (1 node) residual disease PMCWXRT

Ovarian function suppression -> BSO tamoxifen x 3 years zolendronic acid q 6 months x 3 doses

Friday afternoon in clinic....

38-year-old woman presents for consultation for her metastatic breast cancer

She had noted a couple of weeks ago reporting vague back pain that did not go away with conservative measures after 6 weeks.

Labs were obtained and normal other than alk phos 1.5x ULN and CA27-29 of 65

Completion staging shows: bone only metastatic recurrence as seen by technetium-99m scintigraphic bone scan. CT CAP no other disease

Biopsy confirmed ER+ PR- Her2 0 by IHC and PIK3Ca mutated exon 9

What should her first line systemic therapy be?

Combination chemotherapy

CDK 4/6 inhibitor	Study name	ET partner ¹	Menopausal Status ²	Disease Status ³	PFS ⁴ Exp v control (HR)	OS ⁵
palbociclib	Paloma-1 ³⁴	letrozole	Pre/post	Al sens	20.2 v 10.2 (0.48)	No
	Paloma-2 ³⁵				27.6 v 14.5 (0.56)	NR
	Paloma-3 ³⁸	fulvestrant		Al resis	9.5 v 4.6 (0.46)	NS
ribociclib	Monaleesa-2 ⁴¹	letrozole	Post	Al sens	25.3 v 16 (0.56)	yes
	Monaleesa-3 ⁴³	fulvestrant		AI mixed	20.5 v 12.8 (0.59)	yes
	Monaleesa-7 ⁴⁴	Tam/NSAI	Pre	Al sens	23.8 v 13.3 (0.55)	yes
abemaciclib	Monarch-1 ⁴⁹	None (phase II)	Pre/post	Al resis	6.0 (single arm)	N/A
	Monarch-2 ⁴⁶	fulvestrant		Al resis	16.4 v 9.3 (0.55)	yes
	Monarch-3 ⁴⁷	NSAI		Al sens	28.1 v 14.7 (0.54)	NR

New Phase III HARMONIA Trial Will Compare Palbociclib to Ribociclib for HR-Positive, HER2-Negative Advanced Breast Cancer Press Release – September 19, 2021

"HARMONIA, an international, randomized, Phase III, multicenter, open-label study of ribociclib versus palbociclib, both in combination with endocrine therapy, in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative (HR+/HER2-) advanced or metastatic breast cancer with a HER2-enriched (HER2E) intrinsic subtype [has been announced]. HARMONIA is the first prospective Phase III trial to enroll patients selected by RNA-based molecular subtyping of their tumors and the first to directly compare two CDK4/6 inhibitors in patients with HR+/HER2- advanced breast cancer.

The primary endpoint of HARMONIA is progression free survival, and the study will evaluate if ribociblib positively alters tumor biology, enabling a better response to endocrine therapy compared to palbociclib.

HARMONIA enrollment is expected to begin in Q1 2022. Patients with the basal-like subtype may also enroll. This exploratory cohort of patients will be treated with a chemotherapy-based regimen as these tumors behave more like triple-negative breast cancer."

A subsequent Friday afternoon in clinic....

38-year-old woman presents for follow up for her metastatic breast cancer

HPI:

She's noted more fatigue LFTs are newly elevated CA27-29 has risen to 105 She completes staging scans prior to seeing you

Completion staging shows: bones look stable as seen by technetium-99m scintigraphic bone scan BUT disease progression with new liver lesions as seen on contrast enhanced abdominal CT scan

What should her second line therapy be?

Second line pivotal trials

- SOLAR-1 PFS 11 months v 5.7 months alpelisib + fulvestrant v. ful
 - Al resistant, 6% had had CDK4/6 inhibitor therapy
- OlympiAD olaparib v SOC chemo: 100 ER+ no PFS difference seen

• EMBRACA —talazoparib v SOC chemo -241 HR+ -improved PFS [HR 0.47] and prolonged QOL benefit, no OS difference

Lancet Oncol 2021;22:489-98.

Alpelisib plus fulvestrant in *PIK*3CA-mutated, hormone receptor-positive advanced breast cancer after a CDK4/6 inhibitor (BYLieve): one cohort of a phase 2, multicentre, open-label, non-comparative study

Hope S Rugo, Florence Lerebours, Eva Ciruelos, Pamela Drullinsky, Manuel Ruiz-Borrego, Patrick Neven, Yeon Hee Park, Aleix Prat, Thomas Bachelot, Dejan Juric, Nicholas Turner, Nickolas Sophos, Juan Pablo Zarate, Christina Arce, Yu-Ming Shen, Stuart Turner, Hemanth Kanakamedala, Wei-Chun Hsu, Stephen Chia

BYLieve: A Phase II, Open-Label, 3-Cohort, Noncomparative Trial (NCT03056755)

Patients who received CDKi + Al

Goal: In the post-CDKi setting, assess the efficacy and safety of alpelisib + ET (fulvestrant or letrozole) for patients with PIK3CA-mutated HR-positive, HER2-negative advanced breast cancer (ABC)

Men or pre/postmenopausala

women with HR+, HER2- ABC with
a PIK3CA mutation

• Last line of prior therapy: CDKi +
ET, systemic chemotherapy or ET

• ECOG PS ≤2

• Measurable disease (per RECIST

as immediate prior treatment (N = 112)b
(Cohort A)

Alpelisib 300 mg oral QD + fulvestrant 500 mgs
as immediate prior treatment (N = 112)b
(Cohort A)

Alpelisib 300 mg oral QD + letrozole 2.5 mgd

Treatment crossover between cohorts is not permitted

Patients who progressed on/after AI and received chemotherapy or

ET as immediate prior treatment (N = 112)

(Cohort C)

Alpelisib 300 mg oral QD + fulvestrant 500 mg^c

Primary endpoint

- Proportion of patients alive without PD at 6 months (RECIST v1.1) in each cohort
- Secondary endpoints include

(assessed in each cohort)

- PFS
- PFS2
- ORR, CBR, DOR
- OS
- Safety

^aMen in the letrozole cohort and premenopausal women also received goserelin 3.6 mg SC every 28 days or leuprolide 7.5 mg IM every 28 days for adequate gonadal suppression. ^bEnrollment in each cohort continued until at least 112 patients with a centrally confirmed PIK3CA mutation was reached.

^c IM on D1 and D15 of Cycle 1 and D1 for all other cycles thereafter. ^dOral QD.

Cohort A: Rugo HS et al. Lancet Oncol 2021.

v1.1) or ≥1 predominantly lytic

bone lesion

BYLieve: A Phase II, Open-Label, 3-Cohort, Noncomparative Trial (NCT03056755)

Goal: In the post-CDKi setting, assess the efficacy and safety of alpelisib + ET (fulvestrant or letrozole) for patients with PIK3CA-mutated HR-positive, HER2-negative advanced breast cancer (ABC)

Men or women w a

• Last line ET, syster
• ECOG PS

 Measura v1.1) or a bone lesi At median follow up of 11.7 months 61/121 patients were alive and without progression at 6 months or more of therapy

without PD each cohort

^aMen in the letrozole cohort and premenopausal women also received goserelin 3.6 mg SC every 28 days or leuprolide 7.5 mg IM every 28 days for adequate gonadal suppression. ^bEnrollment in each cohort continued until at least 112 patients with a centrally confirmed PIK3CA mutation was reached.

^c IM on D1 and D15 of Cycle 1 and D1 for all other cycles thereafter. ^dOral QD.

Elacestrant, an oral selective estrogen receptor degrader (SERD), vs investigator's choice of endocrine monotherapy for ER+/HER2- advanced/metastatic breast cancer (mBC) following progression on prior endocrine and CDK4/6 inhibitor therapy: Results of EMERALD phase 3 trial

<u>Bardia A,¹</u> Neven P,² Streich G,³ Montero AJ,⁴ Forget F,⁵ Mouret-Reynier MA,⁶ Sohn JH,⁷ Vuylsteke P,⁸ Harnden KK,⁹ Khong H,¹⁰ Kocsis J,¹¹ Dalenc F,¹² Kaklamani V,¹³ Dillon P,¹⁴ Babu S,¹⁵ Waters S,¹⁶ Deleu I,¹⁷ Garcia-Saenz J,¹⁸ Bria E,¹⁹ Cazzaniga M,²⁰ Lu J,²¹ Aftimos P,²² Cortes J,²³ Liu S,²⁴ Laurent D,²⁵ Conlan MG,²⁶ Bidard FC²⁷

1. Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; 2. Universitaire Ziekenhuizen (UZ) - Leuven Cancer Institute, Leuven, Belgium; 3. Centro Médico Austral, Buenos Aires, Argentina; 4. University Hospitals Seidman Cancer Center- Case Western Reserve University, Cleveland, OH, USA; 5. Centre Hospitalier de l'Ardenne - Site de Libramont, Libramont-Chevigny, Belgium; 6. Centre Jean Perrin, Clermont-Ferrand, France; 7. Yonsei Cancer Center, Yonsei University Health System -Medical Oncology, Seoul, Republic of Korea; 8. CHU UCL Namur – Site Sainte-Elisabeth, Namur, Belgium; 9. Inova Schar Cancer Institute, Fairfax, Virginia; 10. Moffit Cancer Center & Research Institute, Tampa, FL, USA; 11. Bács-Kiskun Megyei Kórház, Kecskemét, Hungary; 12. Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France; 13. University of Texas Health Sciences Center, Houston, TX; 14. University of Virginia Cancer Center, Charlottesville, VA, USA; 15. Fort Wayne, USA; 16. Velindre Cancer Centre, Cardiff, UK; 17. AZ Nikolaas, Sint-Niklaas, Belgium; 18. Instituto de Investigación Sanitaria Hospital Clinico San Carlos (IdISSC), Madrid, Spain; 19. Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy; 20. Ospedale San Gerardo-ASST Monza, Monza, Italy; 21. University Of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA; 22. Institut Jules Bordet – Université Libre de Bruxelles, Brussels, Belgium; 23. International Breast Cancer Center (IBCC), Quiron Group, Barcelona Spain; 24. Cytel, Waltham, MA, USA; 25. Berlin Chemie AG/Menarini Ricerche S.p.A, Berlin, Germany; 26. Radius Health, Inc., Boston, MA, USA; 27. Institut Curie, Paris and Saint Cloud, France

EMERALD Phase 3 Study Design

Presence of visceral metastases

Prior treatment with fulvestrant

^aDocumentation of ER+ tumor with ≥ 1% staining by immunohistochemistry; ^bRecruitment from February 2019 to October 2020; ^cProtocol-defined dose reductions permitted; ^dBlinded Independent Central Review. ^eESR1-mutation status was determined by ctDNA analysis using the Guardant360 assay (Guardant health, Redwood City, CA). ^fRestaging CT scans every 8 weeks.

CBR, clinical benefit rate; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; ORR, objective response rate; OS, overall survival, PD, progressive disease; PFS: progression-free survival; Pts, patients; R, randomized. SOC, standard of care.

Baseline Demographic and Disease Characteristics

	Elacestrant		SC	OC .
Parameter	All	<i>mESR1</i>	All	mESR1
	(N=239)	(N=115)	(N=238)	(N=113)
Median age, years (range)	63.0 (24-89)	64.0 (28-89)	63.5 (32-83)	63.0 (32-83)
Gender, n % Female Male	233 (97.5)	115 (100)	237 (99.6)	113 (100)
	6 (2.5)	0	1 (0.4)	0
ECOG PS, n (%) 0 1 >1	143 (59.8)	67 (58.3)	135 (56.7)	62 (54.9)
	96 (40.2)	48 (41.7)	102 (42.9)	51 (45.1)
	0	0	1 (0.4)	0
Visceral metastasis*, n (%)	163 (68.2)	81 (70.4)	168 (70.6)	83 (73.5)
Bone-only disease, n (%)	38 (15.9)	14 (12.2)	29 (12.2)	14 (12.4)
Prior adjuvant therapy, n (%)	158 (66.1)	62 (53.9)	141 (59.2)	65 (57.5)
Number of prior lines of endocrine therapy,** n (%) 1 2	129 (54.0)	73 (63.5)	141 (59.2)	69 (61.1)
	110 (46.0)	42 (36.5)	97 (40.8)	44 (38.9)
Number of prior lines of chemotherapy,** n (%) 0 1	191 (79.9)	89 (77.4)	180 (75.6)	81 (71.7)
	48 (20.1)	26 (22.6)	58 (24.4)	32 (28.3)

^{*}Includes lung, liver, brain, pleural, and peritoneal involvement

^{**}In the advanced/metastatic setting

Primary Endpoint: PFS by IRC

All Patients (ITT)

Elacestrant is associated with a 30% reduction in the risk of progression or death in all patients with ER+/HER2- mBC

Elacestrant demonstrated a significant improvement versus SOC in all patients with ER+/HER2-advanced/metastatic breast cancer following CDK4/6i therapy

Primary Endpoint: PFS by IRC

Patients With Tumors Harboring mESR1

Elacestrant is associated with a 45% reduction in the risk of progression or death in patients harboring *mESR1*

Elacestrant demonstrated a significant improvement versus SOC in patients with ER+/HER2- advanced/metastatic breast cancer and *mESR1* following CDK4/6i therapy

Overall Survival (Interim Analysis)

• While no statistically significant differences were noted at the α =0.0001 level in OS, an evident trend favoring elacestrant over SOC was noted in both groups. Final analysis with mature data is expected to take place in late 2022/early 2023.

EMERALD Study Conclusions

- Elacestrant is the first oral SERD that demonstrated a statistically significant and clinically meaningful improvement in PFS vs SOC endocrine therapy in a randomized global phase 3 study in men and postmenopausal women with ER+/HER2- mBC in the 2nd/3rd-line post-CDK4/6i setting:
 - 30% reduction in the risk of progression or death with elacestrant vs SOC in all patients (HR=0.697 [95% CI: 0.552 0.880]; P=0.0018)
 - 45% reduction in the risk of progression or death with elacestrant vs SOC in patients with *mESR1* (HR=0.546 [95% CI: 0.387 0.768]; *P*=0.0005)

 Elacestrant was well tolerated with a predictable and manageable safety profile consistent with other endocrine therapies.

Select Ongoing Phase II/III Trials of Oral SERDs in Development for ER-Positive, HER2-Negative Advanced Breast Cancer

Drug	Trial name (phase)	Treatment arms	Setting	Estimated study completion date
Amcenestrant (SAR439859)	AMEERA-3 (Phase II)	AmcenestrantEndocrine monotherapy	Prior hormonal tx	July 2025
Amcenestrant (SAR439859)	AMEERA-5 (Phase III)	Amcenestrant + PalbociclibLetrozole + Palbociclib	Untreated ABC	May 2027
Camizestrant (AZD9833)	SERENA-4 (Phase III)	Camizestrant + PalbociclibAnastrozole + Palbociclib	Untreated ABC	February 2029
Giredestrant (GDC-9545)	acelERA (Phase II)	GiredestrantEndocrine monotherapy	Prior systemic and/or targeted tx	January 2024
Giredestrant (GDC-9545)	persevERA (Phase III)	Giredestrant + PalbociclibLetrozole + Palbociclib	Untreated ABC	March 2027

SERD: Selective ER degrader

ER+ Her2- Conclusions:

- Controversy remains over the true benefit of chemotherapy in premenopausal women with HR+/Her2- disease – watch for the OFSET trial!
- Outstanding results with first line CDK4/6 inhibitor combinations in Alsensitive disease
- Novel oral SERD elecestrant shows PFS advantage over fulvestrant or AI first line therapy.
- Ongoing trials will compare CDK4/6 options and other novel SERDS
- Second line or AI resistant disease therapy has options:
 - Fulvestrant plus CDK 4/6 inhibition if CDK4/6 naïve
 - Alpelisib if PIK3ca mutated
 - Talazaparib if BRCA+
 - Everolimus and exemestane

