Immune-Related Adverse Events With Checkpoint Inhibitors

Meri Muminovic, MD

Memorial Cancer Institute at

Memorial Healthcare System

Objectives

Immune-Related Adverse Events With Checkpoint Inhibitors

- Review the spectrum of immune mediated adverse events (irAEs) induced by immune checkpoint inhibitors (ICIs)
- Review the kinetics of irAEs with ICIs
- Discuss the effect of baseline corticosteroid use on outcome with ICIs
- Review national guidelines for the management of irAEs

The Cancer-Immune Set Point:

Multivariate Factors Influence Tolerance and Immunity Immune-Related Adverse Events With Checkpoint Inhibitors

- Cancer immunity is influenced by a complex set of tumor, host and environmental factors¹
- The cancer-immune set point is considered the threshold that must be surpassed for a person with cancer to respond to immunotherapy and varies between individuals

Mechanism of immune-related adverse events

Immune Checkpoint Blockade: CTLA-4, PD-L1, PD-1

Immune Checkpoint Blockade: CTLA-4, PD-L1, PD-1

Immune-Related Adverse Events With Checkpoint Inhibitors

Adapted from Pardoll DM. Nat Rev Cancer. 2012;12:252-264 and Merelli B, et al. Critical Rev Oncol Hematol. 2014;89:140-165.

Spectrum of Immune-Related Toxicities

Frequencies of ICI - Induced irAEs

Frequencies of ICI - Induced irAEs

Immune-Related Adverse Events With Checkpoint Inhibitors

1. Michot JM, et al. Eur J Cancer. 2016;54:139-148.

Incidence of ICI -Induced Adverse Events – PD-1/PD-L1 Antagonists

All-grade AEs¹

AE	Incidence (95% CI)	Overall mean incidence of all-grade AEs (1.66%)						
Fatigue	18.26 (16.49-20.11)				_	-		
Pruritus	10.61 (9.46-11.83)			-				
Diarrhea	9.47 (8.43-10.58)			-				
Rash	9.31 (8.29-10.41)			-				
Nausea	8.39 (7.46-9.39)			•				
Decreased appetite	7.18 (6.36-8.06)			•				
Hypothyroidism	6.07 (5.35-6.85)		•	ŀ				
Arthralgia	5.83 (5.15-6.59)		1					
Asthenia	5.58 (4.92-6.31)							
Pyrexia	4.77 (4.18-5.42)		•					
Cough	4.17 (3.64-4.77)							
Dyspnea	3.88 (3.38-4.45)	1						
Anemia	3.84 (3.35-4.38)							
Infusion-related reaction	3.63 (3.15-4.17)		ŀ					
Constipation	3.60 (3.12-4.13)							
		0	5 I nc	10 idenc	15 e (95	20 % CI)	25	

Grade 3 or higher AEs¹

AE	Incidence (95% CI)	Overall mean incidence of grade 3 or higher AEs (0.11%)
Fatigue	0.89 (0.69-1.14)	──
Anemia	0.78 (0.59-1.02)	─
AST increased	0.75 (0.56-0.99)	-
Lipase increased	0.71 (0.51-0.98)	
ALT increased	0.70 (0.52-0.93)	
Pneumonitis	0.67 (0.50-0.89)	
Diarrhea	0.59 (0.45-0.77)	
Colitis	0.47 (0.34-0.65)	-
GGT increase	0.47 (0.30-0.69)	
Hepatitis	0.43 (0.30-0.62)	
Dyspnea	0.42 (0.30-0.59)	-
Lymphopenia	0.40 (0.26-0.60)	-
Hyponatremia	0.39 (0.25-0.59)	
Asthenia	0.34 (0.25-0.48)	
Amylase increased	0.30 (0.17-0.47)	
		0 0.5 Incidence (95% CI)

- Systemic review and meta-analysis including 125 clinical trials and 20,128 patients
- Overall AE rates:
 - All-grade:66.0%
 - ≥ Grade 3:14.0%
- Overall incidence of treatment-related death was 0.45%

Incidence of ICI - Induced Adverse Events – PD-1/PD-L1 Antagonists

All-grade irAEs¹

AE	Incidence (95% CI)	Overall mean incidence of all-g AEs (1.66%)			ıde	
Endocrine dysfunction						
Hypothyroidism	6.07 (5.35-6.85)		-	_		
Hyperthyroidism	2.82 (2.40-3.29)		-			
Hyperglycemia	1.20 (0.91-1.55)					
Thyroiditis	0.75 (0.52-1.04)	•				
Adrenal insufficiency	0.69 (0.50-0.93)	=				
Hypophysitis	0.60 (0.42-0.82)	-				
Type 1 diabetes	0.43 (0.27-0.65)	-				
Hypopituitarism	0.26 (0.12-0.50)					
Autoimmune thyroiditis	0.20 (0.07-0.45)	=				
Other disorder						
Diarrhea	9.47 (8.43-10.58)			-		
AST increased	3.39 (2.94-3.89)		-			
Vitiligo	3.26 (2.80-3.79)		-			
ALT increased	3.14 (2.71-3.62)		-			
Pneumonitis	2.79 (2.39-3.23)		-			
Colitis	1.24 (0.99-1.54)					
Bilirubin increase	1.05 (0.75-1.41)	-				
Hepatitis	0.85 (0.64-1.10)	=				
Uveitis	0.29 (0.15-0.51)	=				
		0	5	10	15	
			Incidence (95% CI)			

Grade 3 or higher irAEs¹

AE	Incidence (95% CI)	Overall mean incidence of grade 3 or high AEs (0.11%)		
Endocrine dysfunction				
Hyperglycemia	0.24 (0.13-0.38)			
Adrenal insufficiency	0.18 (0.10-0.30)	-		
Type 1 diabetes	0.18 (0.10-0.30)	—		
Hypophysitis	0.16 (0.09-0.27)	—		
Hyperthyroidism	0.08 (0.04-0.13)	-		
Hypopituitarism	0.07 (0.02-0.16)	-		
Thyroiditis	0.04 (0.01-0.10)	-		
Hyperthyroidism	0.04 (0.02-0.10)	-		
Autoimmune thyroiditis	0.02 (0.00-0.09)	-		
Other disorder				
AST increased	0.75 (0.56-0.99)			
ALT increased	0.70 (0.52-0.93)			
Pneumonitis	0.67 (0.50-0.89)		-	
Diarrhea	0.59 (0.45-0.77)			
Colitis	0.47 (0.34-0.65)			
Hepatitis	0.43 (0.30-0.62)			
Bilirubin increase	0.15 (0.07-0.28)	—		
Uveitis	0.02 (0.00-0.07)	-		
Vitiligo	0.02 (0.00-0.06)	■-		
-	,	0 0.5	1	
		Incidence (95% CI)		

^{1.} Wang Y, et al. JAMA Oncol. 2019. doi: 10.1001/jamaoncol.2019.0393.

AEs by Cancer Type

All-grade AEs¹

	3						
Туре	Mean Incidence (95% CI)	Overall mean incidence of all-grade AEs (1.66%)					
Lung	1.55 (1.23-1.81)						
Gastrointestinal	1.61 (1.27-1.94)						
Other	1.64 (1.40-1.94)						
Genitourinary	1.67 (1.43-2.01)						
Mixed	1.68 (1.43-2.05)						
Hematologic malignant neoplasm	1.69 (1.39-2.35)						
Melanoma	1.72 (1.45-2.27)						
Overall	1.66 (1.47-1.86)	_					
	1	1.0 1.4 1.8 2.2 2.6					
		Incidence (95% CI)					

Grade 3 or higher AEs¹

AE	Mean Incidence (95% CI)	Overall mean incidence of grade 3 or higher AEs (0.11%)
Melanoma	0.09 (0.05-0.13)	-
Lung	0.09 (0.06-0.13)	
Mixed	0.10 (0.07-0.15)	_
Genitourinary	0.11 (0.08-0.15)	-
Other	0.12 (0.09-0.17)	-
Gastrointestinal	0.12 (0.08-0.19)	
Hematologic malignant neoplasm	0.13 (0.08-0.25)	
Overall	0.11 (0.08-0.14)	-
		0 0.1 0.2 0.3 0.4
		Incidence (95% CI)

The overall mean incidence of adverse events were similar across cancer types¹

AEs by Drug Type

 PD-1 inhibitors were associated with a higher mean incidence of grade 3 or higher adverse events than PD-L1 inhibitors¹

Comparison	PR (OR > 1 Data)	Odds Ratio (95% CI)	Overall mean incidence of grade 3 or higher AEs (0.11%)				ıde
PD-1 vs PD-L1 inhibitors							
All grade	0.51	1.00 (0.78-1.32)	_				
Grade 3 or higher	0.97	1.58 (1.00-2.54)				_	
			0	1	2	3	4
				OR (95% CI)		

Kinetics of ICI - Induced irAEs

- Can occur months after treatment initiation, even after treatment discontinuation²
- More defined time window for some AEs than others³
- Onset generally earlier in patients who receive combination therapy⁴

irAEs with CPIs1

Time course

Kinetics of ICI - Induced irAEs – CTLA-4 Antagonists

Kinetics of ICI - Induced irAEs – PD-1/PD-L1 Antagonists

• Kinetics of ICI - Induced irAEs – PD-1/PD-L1 Antagonists

Kinetics of ICI - Induced Pneumonitis

Clinical Course of Pneumonitis With Anti–PD-1/PD-L1 Therapy¹

- 915 patients received anti—PD-1 or anti—PD-L1 as monotherapy or in combination with anti—CTLA-4¹
 - Overall incidence of pneumonitis was 5%, with a greater incidence in patients who received combination therapy than in those who received monotherapy (10% vs 3%; P < 0.001)
 - Median 2.8 months (9 days to 19 months)²
 - Radiologic and pathologic features of pneumonitis were diverse
 - 100% of patients (5/5) who received an aTNF ± csDMARDs for worsening pneumonitis ultimately died
 - Pneumonitis (1), infections associated with immunosuppression (3),
 - progressive cancer (1)
 - 1. Naidoo J, et al. *J Clin Oncol*. 2017;35:709-717.
 - 2. Owen CN et al. Delayed immune-related adverse events with anti-PD-1-based immunotherapy in melanoma. Ann Oncol. 2021 Jul;32(7):917-925. doi: 10.1016/j.annonc.2021.03.204. Epub 2021 Mar 30. PMID: 33798657.

Association Between irAEs and Outcomes

^{1.} Adapted from Hodi FS, et al. *Lancet Oncol*. 2016;17:1558-1568 and Hodi FS, et al. Poster. ASCO. 2016 (abstract 9518). 2. Freeman-Keller M, et al. *Clin Cancer Res*. 2016;22:886-894.

Association Between irAEs and Outcomes

Association Between Use of Corticosteroids and Outcomes

Cellular effects of corticosteroids¹

Corticosteroids have wide-ranging anti-inflammatory and other effects

Studies have shown similar clinical outcomes in patients who require immunosuppression to treat irAEs and in those who do not require treatment^{2,3}

It is likely that corticosteroids inhibit at least some elements of effective antitumor responses⁴

In a literature review of 15 studies with 14,123 patients, corticosteroids decreased PFS and OS²

The specific cellular and molecular immune mechanisms underlying toxicity are unlikely to precisely match those that cause tumor rejection e.g. IFN- γ vs TNF- α^7

Rheumatic irAEs often require high-dose corticosteroids and may require synthetic or biologic DMARD therapy^{8,9}

- 1. Barnes PJ. *Pharmaceuticals*. 2010;3:514-540. 2. Weber JS, et al. *J Clin Oncol*. 2017;35:785-792. 3. Horvat TZ, et al. *J Clin Oncol*. 2015;33:3193-3198. 4. Faje AT, et al. *Cancer*. 2018;124:3706-3714. 5. Arbour KC, et al. *J Clin Oncol*. 2018;36:2872-2878. 6. Ricciuti B et al. *J Clin Oncol*. 2019. doi: 10.1200/JCO.19.00189. [Epub ahead of print] 7. Dougan M. *Front Immunol*. 2017;8:1547. 8. Calabrese LH, et al. *Nat Rev Rheumatol*. 2018;14:569-579. 9. Mitchell EL, et al. *Eur J Cancer*. 2018;105:88-102.
- 2. Jiarui Li, Kaili Yang, Lin Zhao, Chunmei Bai, and Zhao Sun Journal of Clinical Oncology 2020 38:15_suppl, e15234-e15234

- Retrospective review (N = 640)
- Baseline steroid dose > or = 10 mg prednisone equivalents (N = 90; 14%)
- Indication for corticosteroid use
 - Dyspnea 33%
 - − Fatigue − 22%
 - CNS mets 19%
- Multivariate analysis (smoking history, PS, hx of CNS mets) - prednisone > or < 10 mg
 - PFS 1.31 (95% CI 1.03 1.67)
 - OS 1.66 (95% CI 1.28 2.16)
- Dose-related effect observed

Response rates, progression-free survival (PFS), and overall survival (OS) of patients treated with programmed death-ligand 1 blockade on the basis of reported corticosteroid usage at Memorial Sloan Kettering Cancer Center (MSKCC) and Gustave Roussy Cancer Center (GRCC). Four hundred fifty-one of 455 patients were evaluable for response in the MSKCC cohort and 185 of 185 patients were evaluable for response in the GRCC cohort. CR, complete response; POD, progression of disease; PR, partial response; SD, stable disease. Arbour et al. J Clin Oncol 2018;36:2872-2878.

- Retrospective review (N = 640)
- Baseline steroid dose > or = 10 mg prednisone equivalents (N = 90; 14%)
- Indication for corticosteroid use
 - Dyspnea 33%
 - Fatigue 22%
 - CNS mets 19%
- Multivariate analysis (smoking history, PS, hx of CNS mets) prednisone > or < 10 mg
 - − PFS − 1.31 (95% CI 1.03 1.67)
 - OS 1.66 (95% CI 1.28 2.16)
- Dose-related effect observed

- Retrospective review (N = 640)
- Baseline steroid dose > or = 10 mg prednisone equivalents (N = 90; 14%)
- Indication for corticosteroid use
 - Dyspnea 33%
 - Fatigue 22%
 - CNS mets 19%
- Multivariate analysis (smoking history, PS, hx of CNS mets) prednisone > or < 10 mg
 - PFS 1.31 (95% CI 1.03 1.67)
 - OS 1.66 (95% CI 1.28 2.16)
- Dose-related effect observed

Response rates, progression-free survival (PFS), and overall survival (OS) of patients treated with programmed death-ligand 1 blockade on the basis of reported corticosteroid usage at Memorial Sloan Kettering Cancer Center (MSKCC) and Gustave Roussy Cancer Center (GRCC). Four hundred fifty-one of 455 patients were evaluable for response in the MSKCC cohort and 185 of 185 patients were evaluable for response in the GRCC cohort. CR, complete response; POD, progression of disease; PR, partial response; SD, stable disease. Arbour et al. J Clin Oncol 2018;36:2872-2878.

- Retrospective review (N = 650)
- Baseline steroid dose > or = 10 mg prednisone equivalents
- Malignancy-related steroid use (10.2%, N = 66)
 - CNS mets 57.6%
 - Cancer related dyspnea 18.2%
 - Pain from bone mets 16.7%
 - Anorexia 7.6%
- Malignancy unrelated steroid use (4.2%, N = 27)
 - Pneumonitis from prior chemo/CRT 25.9%
 - COPD 22.2%
 - Autoimmune disease 18.5%
 - lodinated contrast prophylaxis 14.8%
- No difference in outcomes when isolating pts on corticosteroids for malignancy related indications

Outcomes to immunotherapy in the group of patients treated with \$ 10 mg of prednisone for cancer-related palliative indications or cancer-unrelated indications compared with the group of patients receiving less than 10 mg of prednisone according to overall response rate, progression-free survival (PFS), and overall survival (OS). HR, hazard ratio; NR, not reached. Ricciuti et al. J Clin Oncol 2019;37:2872-

- Retrospective review (N = 650)
- Baseline steroid dose > or = 10 mg prednisone equivalents
- Malignancy-related steroid use (10.2%, N = 66)
 - CNS mets 57.6%
 - Cancer related dyspnea 18.2%
 - Pain from bone mets 16.7%
 - Anorexia 7.6%
- Malignancy unrelated steroid use (4.2%, N = 27)
 - Pneumonitis from prior chemo/CRT 25.9%
 - COPD 22.2%
 - Autoimmune disease 18.5%
 - lodinated contrast prophylaxis 14.8%
- No difference in outcomes when isolating pts on corticosteroids for malignancy related indications

- Retrospective review (N = 650)
- Baseline steroid dose > or = 10 mg prednisone equivalents
- Malignancy-related steroid use (10.2%, N = 66)
 - CNS mets 57.6%
 - Cancer related dyspnea 18.2%
 - Pain from bone mets 16.7%
 - Anorexia 7.6%
- Malignancy unrelated steroid use (4.2%, N = 27)
 - Pneumonitis from prior chemo/CRT 25.9%
 - COPD 22.2%
 - Autoimmune disease 18.5%
 - lodinated contrast prophylaxis 14.8%
- No difference in outcomes when isolating pts on corticosteroids for malignancy related indications

Outcomes to immunotherapy in the group of patients treated with \$ 10 mg of prednisone for cancer-related palliative indications or cancer-unrelated indications compared with the group of patients receiving less than 10 mg of prednisone according to overall response rate, progression-free survival (PFS), and overall survival (OS). HR, hazard ratio; NR, not reached. Ricciuti et al. J Clin Oncol 2019;37:2872-2878

Association Between Use of Corticosteroids and Outcomes

Treatment Considerations

- Interprofessional collaboration regarding intensity and duration of concomitant therapies and compatibility with continued CPI therapy¹
- Restarting CPIs after an irAE
 - Depends on severity of irAE and patient's tumor response status²
 - Retrospective studies have shown that irAEs associated with one class of agent (eg, anti-CTLA-4) may not recur with subsequent treatment (eg, anti-PD-1)³

Personalized Treatment of irAEs¹

ASCO Guidelines

- Patient and families should receive up-to-date information about immunotherapies, mechanism of action and possible irAEs prior to therapy.
- High level of suspicion when symptoms occur
- ICPi therapy should be continued with close monitoring for grade 1 toxicities except if neurologic, cardiac or hematologic.
- May consider holding ICPis for grade 2 toxicities and resume when symptoms/labs regress to grade 1. Steroids initial dose 0.5-1 mg/kg/d of prednisone/equivalent
- Hold ICPis for grade 3 toxicities and initiate high dose steroids 1-2 mg/kg/d. If symptoms do not improve infliximab
- When symptoms regress to < grade 1 rechallenge with PD-1/PD-L1 monotherapy if previously combined with CTLA-4
- Grade 4 toxicities permanent discontinuation of ICPis. Unless endocrinopathies if controlled with hormone replacement.

Treatment of Patients With Pre-Existing Rheumatic Diseases

- Patients with pre-existing rheumatic diseases were not included in clinical trials of CPIs
- Up to 44% of patients with immune-mediated inflammatory diseases treated with CPIs will experience disease flares¹⁻⁴
- 27% to 29% may develop de novo irAEs after receiving CPIs¹⁻³
 - Small prospective study showed patients with pre-existing autoimmunity were more likely to have earlier onset of irAEs than those without pre-existing autoimmunity⁴
- Patients with rheumatic disease should be considered for preemptive referral to a rheumatologist prior to immunotherapy and early referral in the event of rheumatic irAEs⁵
- Rheumatic irAEs often require high-dose corticosteroids and may require synthetic or biologic DMARD therapy⁵⁻⁶
 - Risks and benefits of prolonged DMARD therapy (conventional and biologic)

^{1.} Johnson DB, et al. *JAMA Oncol*. 2016;2:234-240. 2. Johnson DB, et al. *Cancer*. 2017;123:1904-1911. 3. Menzies AM, et al. *Ann Oncol*. 2017;28:368-376. 4. Danlos FX, et al. *Eur J Cancer*. 2018;91:21–29. 5. Calabrese LH, et al. *Nat Rev Rheumatol*. 2018;14:569-579.

Summary

- Incidences of irAEs are independent of cancer types, but anti–PD-1 and anti–PD-L1 therapies may be associated with different incidences of AEs¹
- The relationship between development of irAEs and treatment outcome is evolving²⁻⁴
- Corticosteroids do not seem to impair outcomes when used to treat irAEs⁵⁻⁶
- Detailed consensus guidelines have been developed for the diagnosis and management of irAEs⁷⁻¹⁰; algorithms for personalized treatment of refractory irAEs have also been published¹¹
- For patients with pre-existing rheumatic disease, pre-emptive referral to a rheumatologist prior to immunotherapy and early referral in the event of rheumatic irAEs should be considered¹²
- CPIs are generally well tolerated in patients with HIV, and Phase I and II clinical studies of patients with HIV treated with CPIs are ongoing¹³

^{1.} Wang Y, et al. JAMA Oncol. 2019. doi: 10.1001/jamaoncol.2019.0393. [Epub ahead of print]. 2. Hodi FS, et al. Poster. ASCO. 2016 (abstract 9518). 3. Freeman-Keller M, et al. Clin Cancer Res. 2016;22:886-894. 4. Maher VE, et al. J Clin Oncol. 2019. doi: 10.1200/JCO.19.00318. [Epub ahead of print]. 5. Weber JS, et al. J Clin Oncol. 2017;35:785-792. 6. Horvat TZ, et al. J Clin Oncol. 2015;33:3193-3198 7. Brahmer JR, et al. J Clin Oncol. 2018;36:1714-1768. 8. Thompson JA, et al. J Natl Compr Canc Netw. 2019;17:255-289. 9. Haanen JBAG, et al. Ann Oncol. 2017;28:v119-iv142. 10. Puzanov I, et al. J Immunother. 2017;5:95. 11. Martins F, et al. Lancet Oncol. 2019;20:e54-64. 12. Calabrese LH, et al. Nat Rev Rheumatol. 2018;14:569-579. 13. Cook MR and Kim C. JAMA Oncol. 2019. doi: 10.1001/jamaoncol.2018.6737