ROLE OF INTERVENTIONAL RADIOLOGY IN ONCOLOGIC CARE: NOVEL TECHNIQUES

Roberto Fourzali, MD Interventional Radiology Section Chief and Faculty Neuroradiology Faculty HCA Florida Aventura Hospital Radiology Residency Program Intellirad Imaging

HOW CAN THE INTERVENTIONAL RADIOLOGIST HELP?

- Image-guided procedures to assist diagnosis and facilitate oncologic treatment
 - Biopsies
 - Drainages
 - Catheter placements (ports, PICC, pheresis catheters)
 - Etc
 - Etc
 - Etc

RELATIVELY NOVEL TECHNIQUES

Percutaneous modalities (ablations)

- Chemical
 - Percutaneous ethanol injection (PEI)
- Thermal Hot
 - Radiofrequency Ablation (RFA)
 - Microwave Ablation (MWA)
- Thermal Cold
 - Cryoablation
- Electric
 - Irreversible Electroporation (IRE)

Trans- arterial treatments

- Radioembolization (Y90)
- Chemoembolization (TACE)
 - DEB DOX
 - DEB IRI

Baipai et al. Radiographics 2015; 35:1393-1418

THERMAL ABLATION

- Heat tissue up to:
 - 50-55° C for 4-6 min irreversible cell damage
 - 60-100° C immediate tissue coagulation
 - 100-110° C tissue vaporization and carbonization

<u>ABLATIONS</u>

Modality	Mechanism	Pros	Cons
PEI	Injection of absolute alcohol	Reach difficult areas	Uncontrolled dispersion of ethanol
RFA	Electromagnetic energy deposition agitating molecules producing heat	Most widely studied Better local control Better disease-free survival (vs PEI)	Small lesions (up to 5 cm) Heat sink effect Painful – Needs GA
MWA	Water molecule rotation generating heat	Larger lesions (up to 6-7 cm) in single session Better heat dispersion No heat sink	Less widely studied than RFA Painful – Needs GA
Cryoablation	Freezing and thawing cycles creating cell damage	Iceball is visible Can ablate close to heart and diaphragm Painless	Cryoshock Iceball fracture
IRE	Electric pulses creating irreversible cell damage	Limited connective tissue injury, ECM preserved No heat sink	Arrhythmias and pacemakers

Sutter et al. Radiology; 284: 3 Baipai et al. Radiographics 2015; 35:1393-1418

RFA

HCC 4.0 cm lesion RFA

MWA Lung Ca mets Lesion size 7 x 5 x 6 cm

MWA

MWA

MWA with therapeutic pneumothorax

1024 3.0 50.0 cm .00 1/3.3var.sp 5:03 AM 00 M=10.00 g/ml P 250

MWA

3 months follow-up

IRE

IRE

3 month follow-up

ABLATIONS

- Single day procedure (may need multiple sessions)
- Outpatient procedure, rarely admitted for 24-hour observation
- Minimally-invasive single or multiple percutaneous probes (needles)
- General anesthesia for heat thermal ablations and IRE
- Cryoablation under sedation
- Pre-procedure
 - MELD, Child-Pugh score
 - ECOG status
 - Routine labs (coagulation profile, liver function, etc)

Early stage (A) Very early stage (0) Single, or ≤3 nodules each ≤3 cm Single ≤2 cm Preserved liver function*. PS 0 Preserved liver function*. PS 0 Potential candidate Single ≤3 nodules. Extended for liver each ≤3 cm liver transpla criteria transplantation (size, AFP Portal pressure bilirubin Contraindications to LT Normal Increased Resection Ablation Ablation **Transplant**

WHEN TO USE ABLATIONS?

- Liver-HCC (BCLC 2022 update)
 - Very early stage (0)
 - Single ≤2 cm with preserved liver function AND contraindications to transplant
 - Early stage (A)
 - Single lesion ≤ 3 cm with increased portal pressure and bilirubin levels
 - ≤ 3 nodules ≤ 3 cm each with preserved liver function AND contraindications to transplant
- Bridge to transplant
- Downstage to transplant

WHEN TO USE ABLATIONS

- Metastatic disease
 - Palliative
 - Small lesions < 5 cm
 - Few lesions < 3-5
 - New data states its equivalent to surgical resection in small single lesions, <3 cm
 - For more than 3 lesions, intra-arterial therapies may be better

*We are treating visible disease, but there is usually occult or microscopic disease

INTRA-ARTERIAL THERAPIES

- TACE
- Y90 radioembolization
- Liver has dual blood supply
- Tumor fed by arterial system (also biliary system)
- Hepatocytes fed mainly by portal system

- Administer potent chemotherapeutic agent into the hepatic arteries supplying tumor followed by or with an embolic agent
 - Expose tumor to high local chemotherapy concentrations with minimal systemic bioavailability
 - Prevents washout of drug
 - Induces ischemic necrosis
 - Failure of transmembrane pumps in tumor cells creating greater absorption of chemotherapy
- Mainly selective due to embolization (could be done lobar but better to perform other modalities)
 - Tumor needs to be visible

- Pros
 - Better for HCC and neuroendocrine tumors (arterial enhancement = visible tumors)
 - Less complications from non target embolization
 - Cheaper than Y90

Cons

- Small number of lesions (selective treatment)
- Post-embolic syndrome (Pain, nausea, vomiting, fever)
- Bilomas (depending on portal vein patency)

- Radial or femoral approach
- Single day procedure (may be multiple sessions)
- May need to admit for 24-hour observation (post embolic syndrome)
- Follow-up imaging at 4-8 weeks
- Pre-procedure
 - MELD, Child-Pugh score
 - ECOG status
 - Portal vein must be patent

- Indications
 - HCC
 - Doxorubicin Miriplatin Epirubicin
 - Metastatic disease
 - Colorectal
 - Irinotecan
 - Neuroendocrine
 - Doxorubicin
 - Breast
 - Mitomycin Gemcitabine Doxorubicin 5FU

Y9C

- Injection of micron-sized glass or resin microspheres loaded with Y90 radioisotope into hepatic arteries perfusing the tumor
- Y90 is pure beta emitter with mean tissue penetration of 2.5 mm
 - Allows for high radiation dose with less risk of radiation induced hepatic necrosis

- Lobar radioembolization
 - Multiple innumerable lesions
- Radiation segmentectomy
 - Lesions involving a single segment
 - High-dose radiation to single segment, treats tumor and atrophies segment
- Radiation lobectomy
 - Single lobe involvement
 - Analogous to portal vein embolization
 - Shrink diseased lobe and hypertrophy uninvolved lobe prior to surgical resection

- Pros
 - Post-embolic syndrome unlikely
 - Single lesion (segmentecomy)
 - Lobar treatment
 - Lobectomy

• Cons

- Non-target radioembolization at GI tract
- Radiation pneumonitis
- Radiation cholecystitis
- Post-radiation syndrome
- Expensive

- Two or three stage (outpatient) procedure
- Radial or femoral approach
 - 1. Mapping
 - Evaluate anatomy
 - Embolize branches that may cause potential non-target embolization
 - Evaluate lung shunt to calculate dose
 - 2. Y90 delivery
 - One lobe at a time separated by 30 day treatment free interval
- Follow-up imaging at 3 months

- Pre-procedure
 - MELD, Child-Pugh score
 - ECOG status
 - Routine labs (LFT's, coagulation profile, etc)
 - Total bilirubin < 2.0 mg/dL and not trending up

65 year old Biopsy proven segment VI HCC 5 cm Elevated AFP

Mapping

Segmentectomy

3 month follow-up

WILL IT INTERFERE WITH SYSTEMIC ombined with SIRT Heferences/ongoing Recommendation THERAPIES?

Table 1 Systemic therapies and their potential toxicities when combined with SIRT
Potential effects when combined with SIRT

D	Potential effects when combined with SIRT		References/ongoing	Danamanadatian			
Drug name	Synergy	Toxicity	studies, NCT ^a ID	Recommendation			
Chemotherapy agents							
5FU	Radiosensitization	Liver toxicity	Hendlisz et al. 2010 (14)/-	No safety concerns			
Capecitabine	Radiosensitization	Liver toxicity	Cohen <i>et al.</i> 2014 (26)/–	Capecitabine 1,000 mg/m ² bid is recommended for phase II study			
Oxaliplatin, platinum	Radiosensitization	Liver toxicity	Sharma <i>et al.</i> 2007 (18)/ NCT02807181	Reduced dose as used in SIRFLOX			
Irinotecan	Radiosensitization	Liver toxicity	Gulec <i>et al.</i> 2014 (27), van Hazel <i>et al.</i> 2009 (16)/–	Irinotecan 100 mg/m ² on days 1 and 8 of a 3-week cycle is recommended			
TAS 102	Radiosensitization	Liver toxicity	-/NCT02602327	SCT ^b			
Taxanes	Radiosensitization	Unknown	Unknown	Unknown			
Gemcitabine	Radiosensitization	Unknown	Iñarrairaegui et al. 2015 (28)/NCT02807181	SCT			
Octreotide	Radiosensitization	None	Kennedy <i>et al.</i> 2015 (29)/–	No safety concerns			
Lanreotide	Radiosensitization	None	-/NCT02859064	SCT			
Temozolomide	Radiosensitization	Unknown	Unknown	Unknown			

SUMMARY

- Ablations
 - Small lesions < 3 lesions
- TACE
 - Small number of larger lesions (selective intra-arterial procedure)
- Y90
 - Multiple lesions (lobar procedure)
 - Segmentectomy for large single segment lesions
 - Radiation lobectomy to assist surgical lobectomy

THANK YOU!