Small Cell Lung Cancer

Evolving Treatments for the Oncology Practice

Erin Schenk M.D., Ph.D.
Assistant Professor of Medicine
Division of Medical Oncology
Anschutz Medical Campus
University of Colorado

Epidemiology of SCLC

- Smoking associated
 - Pack years
 - 1st 50 PY confers most risk
 - Age of initiation
 - Duration of smoking
 - Cigarettes/day
- Never smokers
 - 2% of SCLC patients
 - Role for radon, air pollution
 - NSCLC transformation

CHEMICAL COMPOUNDS IN CIGARETTE SMOKE

THIS GRAPHIC OFFERS A SUMMARY OF A SELECTION OF HAZARDOUS COMPOUNDS IN CIGARETTE SMOKE & THEIR EFFECTS

The compounds shown below are all found in cigarette smoke. The mass figures, given in µq, take into account both mainstream (inhaled) and sidestream smoke. 1 µg is equal to 1 millionth of a gram. Amounts of these compounds vary in different brands of cigarettes - these figures are approximate.

- Approx. 919µg per cigarette
- Increases heart rate
- Increases blood pressure · Increases blood glucose

- Large class of compounds
- · Several are tobacco-specific
- Most carcinogenic: NNK & NNN
- NNK: approx. 0.3µg per cigarette NNN: approx. 2-50µg per cigarette May cause reproductive damage

- Approx. 46-272µg per cigarette
- · Damages bone marrow
- · Lowers red blood cell count
- May harm reproductive organs

- Large class of compounds
- · Includes 2-aminonaphthalene: Known human carcinogen
- Linked with bladder cancer Approx. 0.04µg per cigarette
- Large class of compounds Includes benzo[a]pyrene:
 - Known human carcinoge Known DNA mutagen
 - Affects reproductive capacity
 - Up to 0.14µg per cigarette

Approx. 680-1571µg per cigarette

Approx. 36-191µg per cigarette

· Irritant to upper respiratory trac-

Approx. 69-306µg per cigarette

Irritant to skin & nasal passages

May contribute to heart disease

Known human carcinoger · Suspected human teratogen

· Irritant to eyes & skin

· Irritant to skin & eyes

© COMPOUND INTEREST 2015 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

SCLC Staging Distribution and Survival

Systemic Therapy for SCLC EP as SOC for Decades

Fig 2. Overall survival of LD-SCLC patients (N = 214) according to treatment arm (P = .0001). CEV (dashed line), n = 109; EP (solid line), n = 105.

Fig 3. Overall survival of ED-SCLC patients (n = 222) according to treatment arm (P = .21). CEV (dashed line), n = 109; EP (solid line), n = 113.

First Line Therapy for ES-SCLC

IMpower133

IMpower133

OS (primary endpoint):

12.3 vs 10.3 mo HR 0.70 (CI 0.54 – 0.91), p = 0.007

PFS (primary endpoint):

5.2 vs 4.3 moHR 0.52 (CI 0.62 - 0.96), p = 0.02

Response rate:

60.2 vs 64.4%

IMpower133

C Overall Survival According to Baseline Characteristics

Subgroup	No. of Patients (%)	Median Overall Atezolizumab		o) Hazard Ratio for Death	ı (95% CI)
Sex				1	
Male	261 (65)	12.3	10.9		0.74 (0.54–1.02)
Female	142 (35)	12.5	9.5		0.65 (0.42–1.00)
Age	` ,			i	,
<65 yr	217 (54)	12.1	11.5	<u> </u>	→ 0.92 (0.64–1.32)
≥65 yr	186 (46)	12.5	9.6		0.53 (0.36–0.77)
ECOG score	,				
0	140 (35)	16.6	12.4	-	→ 0.79 (0.49–1.27)
1	263 (65)	11.4	9.3	 →	0.68 (0.50–0.93)
Brain metastases				1	
Yes	35 (9)	8.5	9.7	- +	1.07 (0.47–2.43)
No	368 (91)	12.6	10.4	- → i	0.68 (0.52–0.89)
Liver metastases				ļ	
Yes	149 (37)	9.3	7.8	- +	• 0.81 (0.55–1.20)
No	254 (63)	16.8	11.2		0.64 (0.45–0.90)
Tumor mutational bu				i	
<10 mutations/Mb		11.8	9.2		0.70 (0.45–1.07)
≥10 mutations/Mb		14.6	11.2		0.68 (0.47–0.97)
<16 mutations/Mb		12.5	9.9		0.71 (0.52–0.98)
≥16 mutations/Mb		17.8	11.9		0.63 (0.35–1.15)
Intention-to-treat	403 (100)	12.3	10.3	→ ;	0.70 (0.54–0.91)
population			0.1	1.0	2.5
			0.1	1.0	2.5
			→ Ate	zolizumab Better P	lacebo Better

CASPIAN Trial

*EP consists of etoposide 80–100 mg/m2 with either carboplatin AUC 5–6 or cisplatin 75–80 mg/m2, durvalumab dosed at 1500 mg, tremelimumab dosed at 75 mg

†Patients could receive an additional 2 cycles of EP (up to 6 cycles total) and PCI at the investigator's discretion

‡Patients received an additional dose of tremelimumab post-EP; §By investigator assessment per RECIST v1.1

AUC, area under the curve; ORR, objective response rate; PCI, prophylactic cranial irradiation; PD, disease progression; PFS, progression-free survival;

PROs, patient-reported outcomes; PS, performance status; q3w, every 3 weeks; q4w, every 4 weeks; RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1

CASPIAN Trial

Durvalumab + EP

12.9 v 10.5 mo HR 0.71 CI 0.60-0.86, p = 0.0003

Durvalumab + Tremelimumab + EP

10.4 v 10.5 mo HR 0.81 Cl 0.67-0.97, p = 0.02

Adding More Checkpoint Inhibitors

SKYSCRAPER-02: randomized, double-blind, placebocontrolled study of tiragolumab + atezolizumab + chemotherapy in patients with untreated ES-SCLC

Tiragolumab Did Not Improve 1st Line Efficacy

PFS: Primary Analysis Set

Interim OS: Primary Analysis Set

KEYNOTE-604 Pembrolizumab + EP in ES SCLC

Improved PFS

Did not improve OS

Current 1st Line ES-SCLC Trial Landscape

- EP + IO + anti-VEGF
 - Multiple trials + Anlotinib
 - VEGFR1, VEGFR2, VEGFR3, c-Kit, PDGFR-α, FGFR1, FGFR2, FGFR3
- EP + IO + other drugs
 - LAG3 –T cell inhibitor
 - ILT4 MDSC activator
 - PARP inhibitors

Subsequent Line Therapy ES SCLC

Second Line Topotecan

Lurbinectedin Phase 2 Basket Trial SCLC Cohort

	n	OS mo median (95% CI)	OS at 12 mo % (95% CI)	ORR
All	105	9.3 (6.3-11.8)	34.2 (23.2-45.1)	35%
Resistant CTFI< 90d	45	5.0 (4.1-6.3)	15.9 (3.6-28.2)	22%
Sensitive CTFI≥ 90d	60	11.9 (9.7-16.2)	48.3 (32.5-64.1)	45%

Topotecan
OS ~6.5 mo
RR ~20%

ATLANTIS: Lurbinectedin + Doxorubicin

- 613 patients
- Lurbinectedin 2mg/m² +
 Doxorubicin vs Topotecan or CAV

- Median OS of 8.6 mo with the lurbinectedin vs. 7.6 mo
- Lower dose than Phase 2 basket trial (3.2 v 2.0 mg/m²)
- Higher ORR than the control group (31.6% vs. 29.7%)
- Longer median duration of response (5.7 mo vs. 3.8 mo; HR = 0.58; 95% CI, 0.41-.81)

Lurbinectedin Clinical Trials

- LAGOON Phase 3 Trial For Single Agent vs Combination Lurbinectedin vs SOC
- Plan to enroll 705 patients
- 3 arm trial with lurbinectedin at single agent dosing 3.2 mg/m² or 2mg/m² with irinotecan, or control topotecan or irinotecan arms

- Lurbinectedin with Atezolizumab: NCT05091567, NCT04253145
- Lurbinectedin with Pembrolizumab: NCT04358237
- Nivolumab, ipilimumab and Lurbinectedin: NCT04610658
- Durvalumab plus Topotecan or Lurbinectedin: NCT04607954
- Safety and Efficacy of Lurbinectedin: NCT04894591

Novel Approaches In Development

Targeting DLL3

- Highly expressed in SCLC and low/no expression in normal tissue
- ADC
 - Rova-T
 - No benefit in 1st, 2nd or 3rd line trials

Was it the target or the delivery system?

- Bispecific T cell engagers (BiTE)
 - AMG 757
- CAR T therapy
 - AMG 119

Future Directions – SCLC Subtypes

Targeting SCLC Subtypes

- Emerging Clinical Trial Approaches
- PARP inhibitors
 - Prevents DNA repair
- BCL-2/BCXL inhibitors
 - Promote apoptosis
- Aurora kinase inhibitors
 - Inhibit cell division

Challenges in SCLC Subtype Targeting

- While morphologically homogenous, high levels of heterogeneity at the transcriptional level
- Tumor plasticity is a major problem
- Multiple pathways or underlying factors supporting plasticity may need to be targeted

Conclusions

- The addition of anti PD-L1 therapy to 1st line ES-SCLC therapy is the first advance in decades
- Lurbinectedin is an available 2nd line therapy
 - LAGOON Phase III trial will clarify its role vs topotecan
- Subtyping of SCLC may provide better patient stratification for future precision therapy efforts

Questions & Discussion

Thank you!

Erin.Schenk@cuanschutz.edu

CDK4/6 inhibitor Trilaciclib

Phase II study that randomized 77 patients to EP +/- trilaciclib

Consolidative Thoracic RT

- 498 patients randomized after
 4-6 cycles of chemotherapy
- 2 years, survival was 13% (95% CI 9–19) in the thoracic RT group and 3% (95% CI 2–8) in the control group (p=0.004).
- NNT to avoid one death was 10.6 (95% CI 6.1–42.5).

PCI in ES-SCLC

