

July 14-16, 2023

The Roosevelt Hotel New Orleans, Louisiana

18TH ANNUAL

New Orleans Summer Cancer Meeting

APPLYING PRECISION ONCOLOGY, EXPLOITING TUMOR MICROENVIRONMENT AND BREAKING DISPARITIES: ALL-IN-ONE FIGHTING AGAINST CANCER

PROGRAM DIRECTOR

Edgardo S. Santos Castillero, MD, FACP

Novel Treatments for Unresectable Stage III NSCLC

Edgardo S. Santos, MD, FACP
Medical Oncology-Thoracic
Clinical Associate Professor
Charles E. Schmidt School of Medicine/Florida Atlantic University
Treasurer, FLASCO
President, FLASCO Foundation

July 15, 2023

Clinical case.

67-year-old female presented with SOB and cough to ER. CXR revealed an opacification in the right mediastinum. CT chest w contrast revealed a RUL lesion 2.5 cm and bulky lymphadenopathy (4 cm) in the R mediastinum and 2.1cm LN in the subcarina. Patient underwent bronchoscopy and tissue confirm the presence of adenocarcinoma at the subcarinal level; PET CT scan revealed no metastatic disease (cT1cN2M0, stage IIIA). ECOG PS 0. Co-morbid conditions: HTN and hyperlipidemia. TMP revealed EGFR(-), ALK (-), and PD-L1 80%.

All the following therapeutic approaches may be acceptable except:

- 1. Neoadjuvant nivolumab plus chemotherapy followed by surgery.
- 2. cCRT followed by Durvalumab
- 3. Single agent immunotherapy
- 4. Sequential chemotherapy followed by cCRT followed by durvalumab.

Background.....

PACIFIC Trial

Randomized, double-blind, placebo-controlled phase III trial

Stratified by age (<65 vs ≥65 yr), sex (male vs female), and smoking history (current/former vs never)

Patients enrolled regardless of PD-L1 status. If available, pre-cCRT tumor tissue archived for PD-L1 testing.

What Does RT Bring to the Table?

Radiotherapy induces multiple immunomodulatory changes that may influence the effectiveness of immunotherapy

5-year update: PFS

5-year update: Overall Survival

PACIFIC into Perspective....

	Albain	RTOG 0617	PACIFIC	PACIFIC
Arm	CCRT→Resection	CCRT (60 Gy)	CCRT	CCRT→durva
Median follow up	1.88 yrs	5.1 yrs	5.0 yrs	5.0 yrs
OS (median)	23.6 mos	28.7 mos	29.1 mos	47.5 mos
5-year OS	NR	32.1%	33.4%	42.9%
5-year PFS	22%	23%	19%	33.1%

PACIFIC: Summary

- Durvalumab demonstrated improvements in PFS and OS versus placebo.
- Patients who received durvalumab had a lower incidence of new lesions including brain metastases compared with placebo.
- No new safety signals were identified.
- For patients with unresectable Stage III NSCLC who have not progressed post 2 cycles of definitive chemoradiation, durvalumab is FDA approved and category 1 on NCCN.

PACIFIC Real-World Study: ESMO 2021 Study Design & Status (NCT03798535)

PACIFIC-R: An International, Observational Study

Patient population
Unresectable,
Stage III NSCLC,
regardless of turnour
PD-L1 expression

No evidence of
progression
following definitive,
platinum-based CRT*

Index date

Start of durvalumab
(10mg/kg IV Q2W)
through
the EAP
(Sept 2017 to
Dec 2018)

Endpoints

Primary: investigatorassessed PFS; OS

Key secondary: demographics; disease characteristics; prior therapy; PFS/OS by subgroups; AESIs

1,399 patients included in the full analysis set (FAS) from 290 active sites in 11 participating countries

France (n=342), Spain (244)[†], Australia (165), Netherlands (155), Belgium (118), Italy (116), Israel (92), Germany (62), UK (54), Norway (36), and Switzerland (15)

*Patients had completed platinum-based chemotherapy concurrent or sequential to radiotherapy within the previous 12 weeks without evidence of disease progression; *Spanish data are from an externally sponsored study integrated in April 2021

AESI, adverse event of special interest; CRT, chemoradiotherapy; EAP, expanded access progression-free survival; Q2/V, every 2 weeks

PACIFIC-R DATA

Patient Characteristics & Durvalumab Treatment

Characteristics		FAS (N=1,399)
Age at EAP inclusion (years)	Median (range)	66.0 (26–88)
Age categories, %	≤75 years / >75 years	89.6 / 10.4
Sex, %	Male / Female	67.5 / 32.5
Smoking status at EAP inclusion, %	Never / Current / Former	7.9 / 32.6 / 59.5
Stage at diagnosis, %*A	Stage IIIA	43.2
Stage at diagnosis, 76 **	Stage IIIB/C	51.0
	Squamous	35.5
Histological subtype, %" ⁸	Non-squamous	63.1
	Unknown	1.4
ECOG/WHO PS at EAP inclusion, %	0/1/2/3	51.4 / 46.6 / 1.9 / 0.1
10790000 NO NOSO	Concurrent	76.6
CRT type, %*C	Sequential	14.3
	Other	9.1
DD 14 0/40	≥1%	72.5
PD-L1 expression, %*0 (Based on n=967 tested patients)	<1%	17.9
(pasen on n-son resien baneins)	Inconsistent [†]	9.6

- Median time to durvalumab initiation from the end of RT = 56 days
- Overall median durvalumab treatment duration = 335 days (~11 months)
 - >12 months' treatment: 20.1%
 - >14 months' treatment: 4.4%
- Patients received a median of 22 durvalumab infusions
 - 7.1% received >26 infusions

	PACIFIC-R FAS	(durva. arm)
PFS	N=1,399	N=476
Total events, N (%)	737 (52.7)	268 (56.3)†
Progression per RECIST	456 (32.6)	
Progression per physician assessment	170 (12.2)	
Progression, assessment unknown	30 (2.1)	
Deaths in absence of progression	81 (5.8)	
Median PFS, months	21.7	16.9
95% CI	19.2-24.5	13.0-23.9
PFS rate, %		
12 months	62.4	55.7
24 months	48.2	45.0

Girard N, et al ESMO congress 2021. 1171 MO.

Cut-off date for data extraction: 8 April 2021

"Percentages based on patients for whom the data were available," PD-L1 expression tested but not clearly reported.

*Disease stage was missing for n=7 and n=74 had were diagnosed at a stage < III, *Phistology was missing for n=2, *CRT type was missing for n=2, *PD-L1 was not tested for n=432

CRT, chemoradiotherapy, EAP, expanded access programme, ECOG/WHO PS, Eastern Cooperative Oncology Group/World Health Organization performance status; FAS, full analysis set; PD-L1, programmed cell death-figand 1; RT, radiotherapy

Gaps after PACIFIC and How to Improve

Patients with limited KPS

Concurrent immunotherapy with <u>chemoRT</u>

Neoadjuvant chemoimmunotherapy prior to chemoRT

Novel adjuvant therapies

PACIFIC: 5-Year PFS and OS in PD-L1 <1

Spigel, JCO 2022

PACIFIC: PD-L1 Limitations

- These include the use of tumor samples collected before CRT to determine PD-L1 expression.
- PD-L1-assessable samples were not available for 37% of randomly assigned patients.
- Relatively small number of patients with PD-L1 TC expression < 1% (n = 148).</p>
- The placebo arm appeared to overperform with respect to OS among patients with PD-L1 TC expression < 1% compared with the full PACIFIC ITT population which may have been driven by imbalances in potentially prognostic baseline factors.

Patients with limited Karnofsky's PS

Standard of Care: CCRT→durvalumab

Sequential therapy: chemo→ RT→durvalumab¹

RT alone: RT→durvalumab²

Study	Type	Cohort 1	Cohort 2	Study Size	Start	Estimated completion
¹ PACIFIC-6	Phase II	chemo→RT→ Durva (PS 0-1)	chemo→RT→ Durva (PS 2)	117	April 2019	April 2023
² DUART	Phase II	RT (60 Gy^) →Durva	RT (40-54 Gy^) →Durva	150	Jan 2020	Nov 2022

[^]hypofractionation allowed

Concurrent immunotherapy with chemoRT

PACIFIC ➤ Standard of Care: CCRT→ Durvalumab

1,2Durvalumab + CCRT → Durvalumab (PACIFIC 2)

PACIFIC-2 (ex-US)

Phase III, randomized, double-blind, multicenter, global study^{1,2}

Actual enrollment; Platinum-based chemotherapy regimens include cisplatin/ etoposide, carboplatin/paclitaxel, pemetrexed/cisplatin (nonsquamous only) or pemetrexed/carboplatin (nonsquamous only), alongside radiation therapy (5 fractions/week for ~6 weeks [±3 days; total 60 Gy]).

BICR = blinded independent central review; CRT = chemoradiotherapy; CR = complete response; DCR = disease control rate; DoR = duration of response; Gy = gyron; IV = intravenous; NSCLC = non-small-cell lung cancer; ORR = overall response rate; OS = overall survival; OS24 = overall survival at 24 months; PD = progressive disease; PFS = progression-free survival; PFS2= time from randomization to second progression; PK = pharmacokinetics; PR = partial response; Q4W = every 4 weeks; QoL = quality of life; RECIST = Response Evaluation Criteria in Solid Tumors; SD = stable disease; SoC = standard of care; TTDM = time to death or distant metastasis; WHO = World Health Organization.

1. Bradley JD et al. Poster presented at: ASCO Annual Meeting; May 31-June 4, 2019; Chicago, IL. Poster TPS8573; 2. Study NCT03519971. ClinicalTrials.gov website.

Concurrent immunotherapy with chemoRT

PACIFIC Standard of Care: CCRT→ Durvalumab

1,2Durvalumab + CCRT → Durvalumab (PACIFIC 2)

³Nivo +CCRT → Nivo

(NICOLAS)

⁴Nivo/lpi +CCRT → Nivo

(Checkmate 73L)

Study	Туре	Arm 1	Arm 2	Study Size	Start	Est. completion
¹ PACIFIC-2	Randomized	Durva+CCRT →Durva	Placebo+CCRT →Placebo	328	March 2018	June 2022
² NCT04092 283	Randomized	Durva+CCRT →Durva	Placebo+CCRT →Durva	660	April 2020	October 2028
³ NICOLAS	Phase II, Safety/Efficacy	n = 79	mF-U: 21.0 mos	mPFS: 12.7 mos	mOS: 38.8 mos	2-yr OS: 63.7%
CheckMate 73L	Randomized	Nivo + CCRT+ Ipi (Arm A)	Nivo+CCRT (Arm B) Durva + CCRT (Arm C)	888	July 2019	June 2025

Neoadjuvant Chemoimmunotherapy prior to <u>ChemoRT</u>

Study	Туре	Arm A	Arm B	Study Size	Start	Est. completion
NCT040 85250	Phase II, Randomized	ChemoNivo→ CRT→Nivo	ChemoNivo→ CRT→Observe	264	Nov 2019	Nov 2023

¹chemo: docetaxel+cisplatin

²RT: Hypofractionated

Neoadjuvant Chemoimmunotherapy prior to ChemoRT

PACIFIC **Standard of Care**: CCRT→durvalumab

Pembro/Chemo¹→ CCRT + Pembro →Pembro

Study	Туре	Cohort A	Cohort B	Study Size	Start	Est. completion
¹ Keynote- 799	Phase II, nonrandomized	Pembro/Chemo ^A →PembroCRT→ Pembro	Pembro/chemo ^B →PembroCRT→ Pembro	217	Oct 2018	May 2023

Achemo: carboplatin+paclitaxel

Bchemo: cisplatin+pemetrexed

Jabbour SK et al. JAMA Oncol. 2021; 7(9):1-9.

KEYNOTE-799 (NCT03631784)

Primary Objectives

- ORR per RECIST version 1.1 by BICR
- Percentage of patients who develop grade ≥3 pneumonitis
 Secondary Objectives
- PFS, OS, safety

COHORT B (Nonsquamous NSCLC only)

Statistical Analysis Details

- Efficacy assessed in all patients with first study dose before or on October 31, 2019 (PE population)
- Safety assessed in all patients in the as-treated population

KEYNOTE-799

– Primary endpoint:

- · Objective response rate
- Grade 3-5 pneumonitis incidence

	No. (%)			
Adverse event	Cohort A (n = 112) 105 (93.8)		Cohort B (n = 102) 99 (97.1)	
Treatment-related adverse event ^a				
Grade 3-5	72 (64.3)		51 (50.0)	
Led to discontinuation of any treatment	38 (33.9)		19 (18.6)	
Led to death	4 (3.6) ^b		1 (1.0) ^c	
	Any grade	Grade 3-5	Any grade	Grade 3-5
Pneumonitis	22 (19.6)	7 (6.3)	19 (18.6)	5 (4.9)
Radiation pneumonitis	20 (17.9)	2 (1.8)	8 (7.8)	1(1.0)

Progression-Free Survival By BICR per RECIST v1.1 (Primary Efficacy Population)

Rationale for combining durvalumab with oleclumab (anti-CD73) or monalizumab (anti-NKG2A)

- RT induces expression of CD73 and HLA-E (NKG2A ligand), which inhibit antitumour immune response¹⁻⁴
- Oleclumab inhibits CD73 to reduce extracellular adenosine production, thereby promoting antitumour immunity.5 Oleclumab
 combined with durvalumab produced durable responses with manageable safety in a Ph I study of advanced EGFRm NSCLC6
- Monalizumab blocks NKG2A to reduce inhibition of NK and CD8+ T cells.⁷ Monalizumab combined with cetuximab had promising activity with manageable safety in a Ph I/II trial of patients with R/M HNSCC⁸
- Combinations of RT and anti-CD73/NKG2A ± anti-PD-(X) show increased antitumour activity in preclinical models^{1,2,4}

ATP, adenosine triphosphate; AMP, adenosine monophosphate; DC, dendritic cell; EGFRm, epidermal growth factor receptor mutant; MDSC, myeloid-derived suppressor cell; NK, natural killer; PD-(L) 1, programmed cell death (ligand) 1; R/M HNSCC, recurrent/metastatic head and neck squamous cell carcinoma; RT, radiotherapy; TAM, tumour-associated macrophages

COAST: <u>Combination Platform Study</u> in Unresectable Stage III NSCLC. Phase 2, global, randomized open-label study of durvalumab alone or combined with the anti-CD73 <u>mAb oleclumab</u> or anti-NKG2A <u>mAb monalizumab</u> as consolidation therapy in this setting:

Primary Endpoint

 ORR by investigator assessment (RECIST v1.1)

Secondary Endpoints

- Safety
- DoR
- DCR
- PFS by investigator assessment (RECIST v1.1)
- OS
- PK
- Immunogenicity
- A planned sample size of 60 patients per arm was designed to provide acceptable precision in estimating antitumour activities in an early phase setting
- Between Jan 2019 and Jul 2020, 189 patients were randomised of whom 186 received D (n=66), D+O (n=59) or D+M (n=61)
- As of 17 May 2021, all patients had a minimum of 10 months potential <u>follow-up</u> and the median actual follow-up was 11.5 months (range, 0.4–23.4; all patients)

Antitumour activity by investigator assessment (interim analysis; ITT population)

Antitumour activity	D	D+O	D+M
	(N=67)	(N=60)	(N=62)
Confirmed ORR (95% CI),b % [n]	17.9 (9.6, 29.2)	30.0 (18.8, 43.2)	35.5 (23.7, 48.7)
	[12]	[18]	[22]
Confirmed + unconfirmed ORR (95% CI),b % [n]	25.4 (15.5, 37.5) [17]	38.3 (26.1, 51.8) [23]	37.1 (25.2, 50.3) [23]
ORR odds ratio (95% CI)a,b	-	1.83 (0.80, 4.20)	1.77 (0.77, 4.11)
Objective responses by RECIST, ^a n (%) CR PR SD PD NE	2 (3.0)	1 (1.7)	3 (4.8)
	15 (22.4)	22 (36.7)	20 (32.3)
	27 (40.3)	25 (41.7)	27 (43.5)
	15 (22.4)	7 (11.7)	7 (11.3)
	8 (11.9)	5 (8.3)	4 (6.5)
DCR at 16 weeks (95% CI),a,c %	58.2 (45.5, 70.2)	81.7 (69.6, 90.5)	77.4 (65.0, 87.1)
[n]	[39]	[49]	[48]
Median DoR (95% CI), ^a months Range	NR (2.3, NA)	12.9 (6.7, NA)	NR (9.0, NA)
	0.0+, 17.5+	0.0+, 16.9+	1.9+, 18.4+

PFS by investigator assessment (interim analysis; ITT population)

Conclusions

- COAST is the first randomised Phase 2 study to show evidence of improved outcomes with novel IO combinations in the PACIFIC setting
 - Interim data suggest that oleclumab or monalizumab combined with durvalumab can provide additional clinical benefit for patients with unresectable, Stage III NSCLC who have not progressed following cCRT
- Both combinations numerically increased ORR and significantly improved PFS versus durvalumab alone
 - PFS benefit with both combinations was observed across various subgroups, including those based on histology, ECOG PS, prior platinum-based CT, and PD-L1 status
- Safety profiles were consistent across arms, with no new safety signals identified in either combination arm
 - The incidence of AESIs for durvalumab, including pneumonitis, were similar across arms
- Additional translational analyses, including blood gene expression, IHC, and ctDNA, are ongoing

ctDNA, circulating tumour DNA; IHC, immunohistochemistry

These data support further evaluation of these combinations in a registration-intent study

July 14-16, 2023

The Roosevelt Hotel New Orleans, Louisiana

18TH ANNUAL

New Orleans Summer Cancer Meeting

APPLYING PRECISION ONCOLOGY, EXPLOITING TUMOR MICROENVIRONMENT AND BREAKING DISPARITIES: ALL-IN-ONE FIGHTING AGAINST CANCER

PROGRAM DIRECTOR

Edgardo S. Santos Castillero, MD, FACP

PACIFIC-9:

A Global Study to Assess the Effects of Durvalumab With Oleclumab or Durvalumab With Monalizumab Following Concurrent Chemoradiation in Patients With Stage III Unresectable Non-Small Cell Lung Cancer.

Anti-TIGIT Antibodies:

□ TIGIT is a novel inhibitory checkpoint on activated T cells and NK cells.

Tiragolumab is a fully human IgG1/kappa anti-TIGIT monoclonal antibody; blocks binding to its receptor PVR.

Inhibition of TIGIT/PVR may amplify the durability / duration of anti-tumor response of anti-PD-L1/PD-1 antibodies

SKYSCRAPER- 03:

^{*}Durvalumab at Q2W or Q4W based on the investigator in consultation with the patient and/or local standard of care; ‡For patients who weigh ≥30 kg; Q2W, once every 2 weeks; Q4W, once every 4 weeks; IV, intravenous

July 14-16, 2023 The Roosevelt Hotel

18TH ANNUAL

New Orleans Summer Cancer Meeting

APPLYING PRECISION ONCOLOGY, EXPLOITING TUMOR MICROENVIRONMENT AND BREAKING DISPARITIES: ALL-IN-ONE FIGHTING AGAINST CANCER

PROGRAM DIRECTOR

Edgardo S. Santos Castillero, MD, FACP

PACIFIC-8:

A Global Study to Assess the Effects of Durvalumab + Domvanalimab Following Concurrent Chemoradiation in Participants With Stage III Unresectable NSCLC.

Patients with unresectable, stage III NSCLC who have not progressed following definitive, platinum-based cCRT

Documented EGFR and ALK wild-type status

PD-L1 TC <u>expression</u> ≥1%

N≈860a

Primary Endpoint

 PFS in PD-L1 ≥50% as assessed by BICR (RECIST 1.1)

Secondary Endpoints

- PFS in PD-L1 ≥1%
- OS
- Safety / tolerability
- ORR
- DoR
- PFS at 6, 12, 18 and 24 months
- Pharmacokinetics
- Immunogenicity

July 14-16, 2023

The Roosevelt Hotel New Orleans, Louisiana

18TH ANNUAL

New Orleans Summer Cancer Meeting

APPLYING PRECISION ONCOLOGY, EXPLOITING TUMOR MICROENVIRONMENT AND BREAKING DISPARITIES: ALL-IN-ONE FIGHTING AGAINST CANCER

PROGRAM DIRECTOR

Edgardo S. Santos Castillero, MD, FACP

Role of Targeted Therapies Following Chemo-RT

Rationale for Consolidation Targeted Therapy

- Some patients are not candidates for consolidation immune therapy (e.g., transplant, autoimmune disease) or are at high risk for AEs.
- EGFR mutant patients may have worse outcomes after chemoradiation compared to EGFR-wt.
- Significantly improved DFS and OS in the adjuvant setting (ADAURA) and high rates of activity and also improved OS in stage IV.

Qin et al. Expert Rev Anticancer Ther 2019;19(6):533-539. Wu et al. N Eng J Med 2020;383:1711-23.

Ongoing Trials

LAURA Trial (NCT03521154)

- Osimertinib Maintenance After Definitive Chemoradiation in unresectable EGFR Mutation+ Stage III NSCLC
- Primary Endpoint-BICR- confirmed PFS
- Secondary Endpoints- CNS PFS, OS, PFS by mutation status, safety
- 1st pt- July 2018
- Expected results- late 2022

*Patients with a local cobas® EGFR Mutation Test v2 tissue positive result from a CLIA-certified or accredited laboratory do not require part I screening. *Post-CRT imaging performed to assess CR, PR and SD up to 28 days before randomization. *Assessment of PFS2 will not be collected after the primary PFS analysis.

What About <u>no</u> RT for UN-NSCLC?

#8544: Radiation therapy (RT)-free pembrolizumab plus chemotherapy (P+C) for PD-L1 TPS ≥50% locally advanced non-small cell lung cancer (LA-NSCLC): an early report analyzing depth of response from multicenter single arm phase II study (Evolution trial: WJOG11819L)

Akito Hata¹; Taira Ninomaru¹; Hideaki Okada¹; Yoshihito Kogure²; Masahide Oki²; Nobuyuki Yamamoto¹³; Takashi Kjima⁴; Toshihide Yokoyama³; Hirotaka Matsumoto⁵; Yuki Sato¹; Terufumi Kato⁵; Shunichi Sugawara³; Takeshi Sawada¹⁵; Kenichi Yoshimura¹¹; Takashi Seto¹²; Nobuyuki Yamamoto¹³; and Kazuhiko Nakagawa¹⁴

'Division of Thoraci Oxiciog, Koba Minimity Invasive Cancer Center, Koba, Japan; 'Dispartment of Respiratory Medicine, Kursahi Japan; 'Dispartment of Respiratory Medicine, Kursahi Japan; 'Dispartment of Respiratory Medicine, Kursahi, Japan; 'Dispartment of Respiratory Medicine, Kursahi, Japan; 'Dispartment of Respiratory Medicine, Kursahi, Japan; 'Dispartment of Plancer Center, Full Japan; 'Dispartment

Conclusions:

- RT-free P+C exerted a notably high RR, including some CRs.
- The deeper/earlier response and higher PD-L1 TPS could be associated with the higher progression-free incidence at the data cut-off.
- To investigate our hypothesis: RT-free P+C followed by P+PEM (non-squamous) or P alone (squamous) can be a less toxic curative option in selected LA-NSCLC pts with PD-L1 TPS ≥50%, further matured data is warranted.
- Investigator-assessed best response
- 8 (38%) CR; 10 (48%) PR; 2 (10%) SD; and 1 (5%) NE: RR 86%, DCR 95%.
- RR of TPS 50-79% and 80-100% were 78% and 92%, respectively.

Presentation of first enrolled case

70s/F, Adeno TPS 90%, stage IIIc

Achieved ETS+DR over 2-yrs w/o progression

Conclusions on UR-NSCLC >

- The placebo-controlled, Phase 3 PACIFIC study established consolidation durvalumab as SOC for patients with unresectable Stage III NSCLC who have not progressed after cCRT.
 - Five-year data from PACIFIC demonstrated robust and sustained OS plus durable PFS benefit with durvalumab in this patient population
 - 42.9% remain alive and 33.1% remain alive and progression-free at 5 years
- COAST is the first randomised Phase 2 study to show evidence of improved outcomes with novel 10 combinations in the PACIFIC setting ("additional immunomodulation"). PACIFIC 9 has started.
- Both combinations (D+O and D+M) numerically increased ORR and significantly improved PFS versus durvalumab alone:
 - PFS benefit with both combinations was observed across various subgroups, including those based on histology, ECOG PS, prior platinum-based CT, and PD-L1 status.
- Addition of an anti-TIGIT antibody to immunotherapy following concurrent chemoradiation is under investigation (PACIFIC 8 and others).
- Consolidation with targeted therapies following chemoradiation for stage III NSCLC is a promising strategy; a number of trials are underway in EGFR, ALK, ROS1, RET, and PARP to evaluate this approach.
- Biomarkers are needed to identify those who may benefit most from escalation of therapy.

