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* Introduction to CAR T Cell Therapy and Its Clinical
Applications

 Key Challenges in CAR T Cell Therapy Development
O Safety: Addressing Second Primary Malignancies

O Scalability: Enhancing Production and Accessibility

* Innovative Solutions and Current Developments
« Efficacy in Solid Tumors: Breaking Barriers
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Principles of CAR T cells

« CART cells: Personalized immunotherapy using patient's own T cells,
genetically engineered to target specific tumor antigens for cancer

treatment.

» Chimeric Antigen Receptor (CAR) Structure:

* Binder: Ensures antigen recognition, specificity, and affinity
* Hinge region: Provides flexibility and maintains optimal distance to

« Transmembrane Region: Contributes to receptor stability and
« Co-stimulatory Domain: Augments T cell function, metabolism,

and persistence
T cell activation domain: Facilitates downstream T cell activation
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Principles of CAR T cells

Target cell

« CART Cell Killing Mechanism: Tumour cell

o Recognize Tumor-Associated Antigen (TAA)
o Form Immune Synapse with Target Cell

o Release Cytotoxic Granules
O
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FDA Approved CAR T cells in Hematological Malignancies
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Acute lymphoblastic leukemia (ALL) (B-cell precursor)
Large B-cell lymphoma (LBCL)
Follicular lymphoma (FL)

Large B-cell lymphoma (LBCL)
Follicular lymphoma (FL)

Mantle cell lymphoma
Acute lymphoblastic leukemia (ALL) (B-cell precursor)

Large B-cell lymphoma (LBCL)
Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL)

Multiple Myeloma (MM)

Multiple Myeloma (MM)

Approval restricted to patient populations and treatment line



CAR T Cells in Lymphoma: Pivotal Trials
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CAR T Cells in Lymphoma: Pivotal Trials

Product | Disease Trial Line of Trial Overall Event Free CRS Neuro- Reference
treatment Phase Remission survival toxicity
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CAR T Cells in Leukemia: Pivotal Trials

Line of Trial Overall SET Neuro-
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Key Challenges: CAR* T-cell Second Primary Malignancies

Patient Intrinsic

Cell Engineering
« Nov 2023: 22 cases of secondary T-cell
malignancies following CAR T-cell therapy

e Chemotherapy ¢ Disruption of tumor

 Potential cause: Combination of pre-existing and

o Radiation therapy B{Jppre§sor%engs .
3 . . . . . o | i e Disruption of epigenetic
CAR T-cell genetic engineering derived genetic B e e

and epigenetic alterations (e.g. use of viral fedlm=rpeatilstl)

vectors).
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* Not all of these cases have been definitively o) ] S 2
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linked to CAR T cell treatment. & « Clonal hematopoesis Sieollabnel g
g of pre-malignant T cells — oncogenes or &
& o Germline mutations J downregulation of DE,.
.. . . . . L t B
- Mitigation: Requires multifaceted strategies, < smorsipressers g
including patient education, stringent genomic
monitoring, and continued regulatory oversight G L Immunecheckpoint knock:
secondary malignancy out (e.g. PD-1)
and surveillance. of cancer survivors ¢ Overexpression of effector
or pers;stencs genes (e.g.
FOXO01) ot 4

« Solution: Next-generation CARs with enhanced
targeting and safety features.

=8 USC University of Child r_en's»
Southern Cal%ornia Hospital ot

Abou-el-Enein et. al. (2024), Blood Cancer Discov
LOS 'ANGEL



Key Challenges: Scaling CAR T Cell Manufacturing
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Innovative Solutions and Current Developments

CHALLENGE

Viral vectors for genetic delivery
pose safety concerns and high costs

Open processes increase
contamination risks and may result in
operator errors, leading to significant

manufacturing delays

Autologous cells of poor quality may
add complexity and variability to the
process, leading to production failures

Expensive cGMP Facilities add to the
overall cost of therapy
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RESPONSE

Develop & optimize non-viral delivery
for improved safety & efficiency

Implement semi-closed systems to
enhance workflow efficiency and
shorten manufacturing time

Develop allogeneic cell therapies to
enable large-scale production, catering
to a broader range of patients

Shorten manufacturing times and
personnel involvement



Innovative Solutions and Current Developments

- Low Immunogenicity
- Low cost
- Scalable

- Enable multiplex
editing
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Innovative Solutions and Current Developments
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Limited Efficacy in Solid Tumors
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Limited Efficacy in Solid Tumors
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Promise of CAR T in Solid Tumors
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