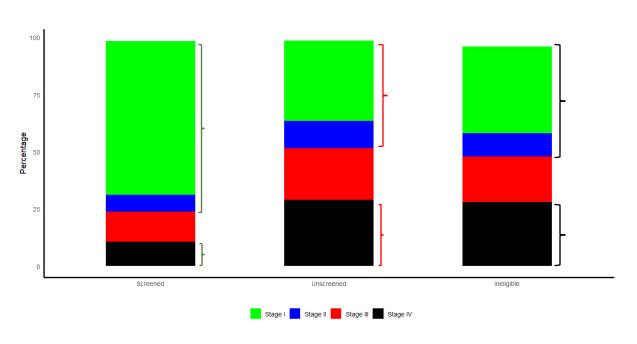
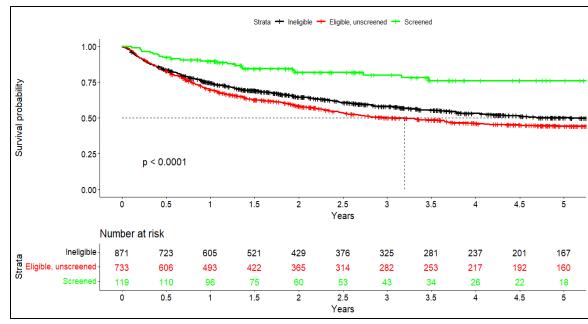


OA17.03. Missed Opportunities for Early Lung Cancer Detection in a Multidisciplinary Thoracic Oncology Clinic Cohort

Ray U. Osarogiagbon, MBBS FASCO Baptist Cancer Center, Memphis, TN USA

Linked screening program, nodule program, and lung cancer databases Among patients with lung cancer, three Cohorts: Screened, Unscreened, Ineligible


	Screened N=122 (6%)	Unscreened N= 788 (41%)	Ineligible N=994 (52%)
Age	70 (65 -74)	67 (62 – 73)	72 (63 – 79)
Female	50	46	53
Black race	17%	30%	30%
Uninsured	0	2%	6%
Never smoked	0	0	20%


 Only 6% of persons diagnosed with lung cancer were screened.

 Mismatch between eligibility criteria and true lung cancer risk was the bigger barrier (52% v 41%).

Clinical Stage, Treatment, Survival: 3 Cohorts

- A third of the eligible unscreened had clinical encounters 1 to 3 years before diagnosis.
- Stage, surgical resection rates, and survival better among the screened
- The nodule program rescued patients from <u>both</u> barriers.

	Screened	Unscreened	Ineligible
5-year OS	77% (68 -87)	45% (41 - 49)	50% (46 – 54)
aHR*	0.36 (0.23 – 0.54)	Ref	0.87 (0.75 – 1.01)

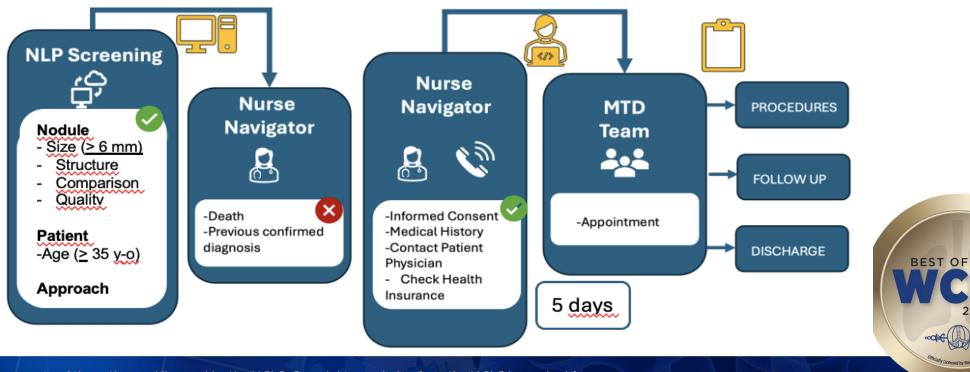
*Sex, age, race, insurance, Charlson comorbidity index in Cox model

Aggregate US lung cancer survival rate: 25%

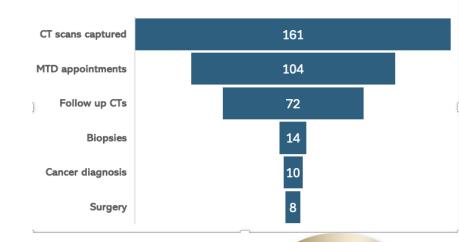
OA.17- Abstract #3092

Implementation of a Natural Language Processing (NLP) Model to Detect Incidental Lung Nodules in a Nationwide Health Care Network

Gabriel Santiago¹, MD, <u>Clarissa Baldotto, MD, PhD¹</u>, Bruno Hochhegger, MD, PhD¹, Rosana Rodrigues, MD, PhD¹, Tiago Machuca, MD, PhD¹, Karina Martinez¹, Evelise Zaidan¹, Marco Conrado, MD¹


¹Institute D'Or for Research and Education Brazil

METHODS


- The objective of this study was to implement the ILN detection NLP model in clinical practice and evaluate its applicability for lung cancer screening.
- A clinical care pathway was developed and implemented, connected to the data generated by the AI
 with the goal of improving patient management.

RESULTS

• The National program evaluated a total of 67,599 chest CT reports, and 1,212 cases (1.79%) were identified for follow-up investigation.

CT criteria	National database		AF Hospital	
All CT reports	67,599	100.0%	11,108	100.0%
Nodule on report	31,854	47.1%	4,366	39.3%
Nodule selected by size and shape	3,261	4.8%	320	2.9%
NLP recommendation for follow up	1,212	1.8%	161	1.4%

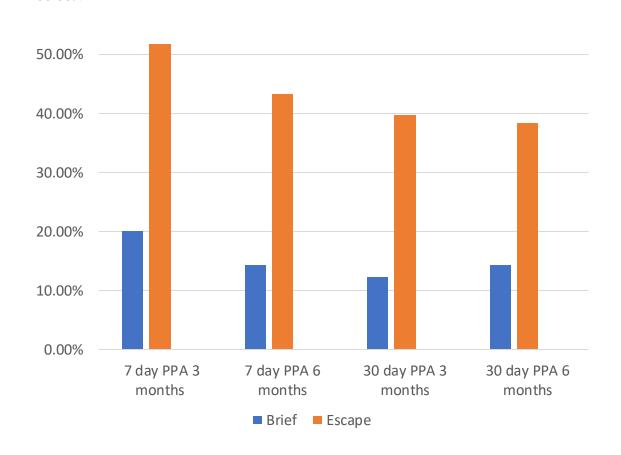
A Randomized Controlled Trial of a Digital Lung Health Intervention to Facilitate Smoking Cessation and Lung Cancer Screening

Mary E. Cooley PhD, RN, FAAN

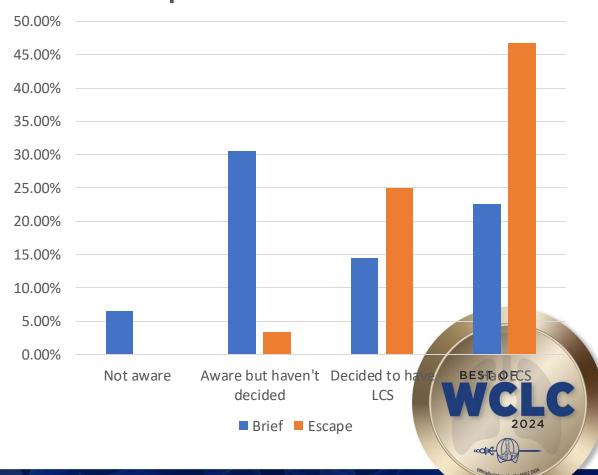
Dana-Farber Cancer Institute

USA

55-77yo smokers with at least 30 pack-years


Enhanced Smoking Cessation Approach to Promote Empowerment (ESCAPE) digital intervention

- Counseling and combined NRT
- Storytelling narrative communication messages
- Educational materials used as part of the intervention
 - Patient participant
 - Lung cancer screening decision aide
 - Primary care provider
 - CMS lung cancer screening Checklist


BRIEF

- Advice to quit smoking
- Referral to state Quitline to provide counseling and NRT
- Educational materials
 - Patient participant
 - Lung cancer screening decision aide

Smoking Cessation 7 and 30 Day PPA

Lung Cancer Screening Adoption at 6 months

Impact of Using Smoking Duration in Place of Pack-Years as Eligibility Criteria for Lung Cancer Screening to Reduce Racial and Ethnic Disparities

Chloe C. Su, PhD*, Victoria Y. Ding, MS*, Kevin ten Haaf, PhD, Julie T. Wu, MD, Neal D. Freedman, PhD, Leah M. Backhus, MD, Ann N. Leung, MD, Natalie S. Lui, MD, Christopher A. Haiman, PhD, Sung-Shim Lani Park, PhD, Joel W. Neal, MD, Rafael Meza, PhD, Martin C. Tammemägi, PhD, Iona Cheng, PhD, Loïc Le Marchand, MD, Heather A. Wakelee, MD, Eunji Choi, PhD**, Summer S. Han, PhD**

*equal contribution, ** equal contribution

Stanford University School of Medicine USA

Study Goals and Methods

Goal 1: Compare smoking duration-based USPSTF guidelines vs. risk-based screening

Eligibility criteria compared

USPSTF 2021 Guidelines (USPSTF-21)

VS

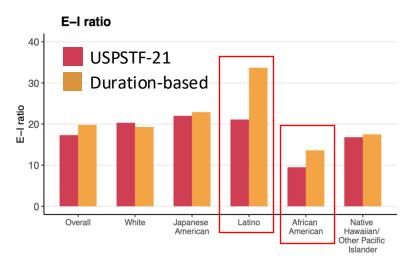
Smoking duration in USPSTF-21 (duration-based criteria)

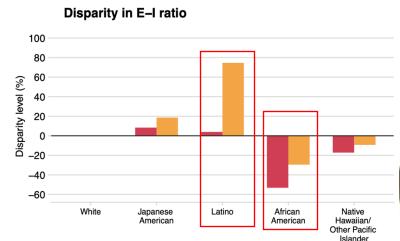
PLCOm2012-Update (risk-based criteria)

Goal 2: Evaluate eligibility rate in context of lung cancer risk by racial and ethnic groups

Metrics assessed

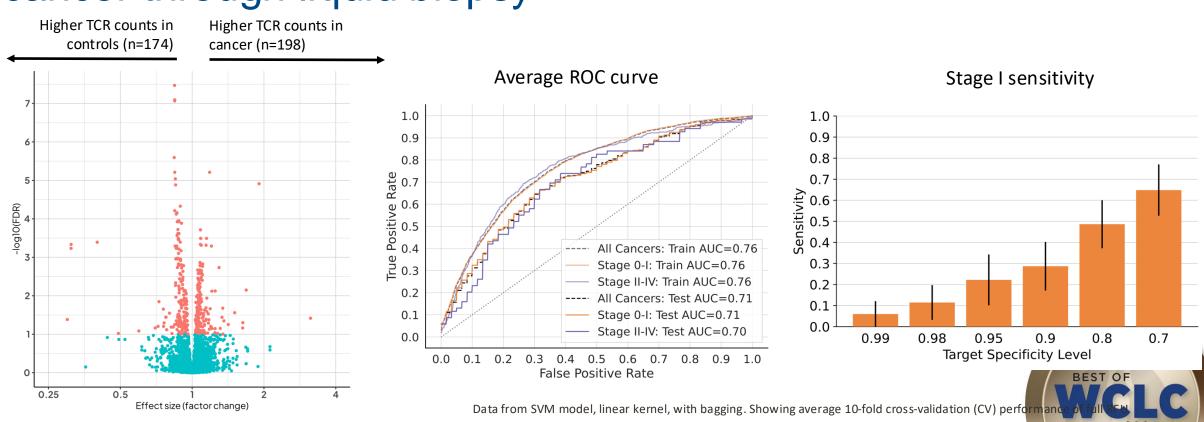
- 1. Eligibility rate
- 2. **Eligibility-incidence ratio** (E-I ratio; 6-year lung cancer incidence)
- 3. Screening performance (sensitivity, specificity, number needed to screen [NNS])




Results: USPSTF-21 vs. Duration-based

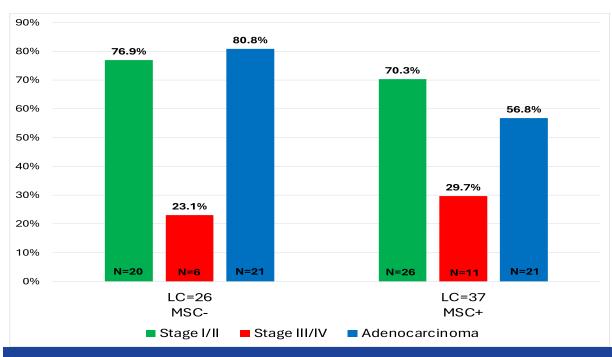
USPSTF- 21	>30y duration	>20y duration	>10y duration
24.0	27.5	40.5	48.6
57.7	66.1	76.2	81.2
76.5	73.0	60.0	51.9
30	30	39	44
	21 24.0 57.7 76.5	21 duration 24.0 27.5 57.7 66.1 76.5 73.0	21 duration duration 24.0 27.5 40.5 57.7 66.1 76.2 76.5 73.0 60.0

- Closest match to USPSTF-21 eligibility rate
- Increased sensitivity
- Little compromise in specificity
- No change in NNN

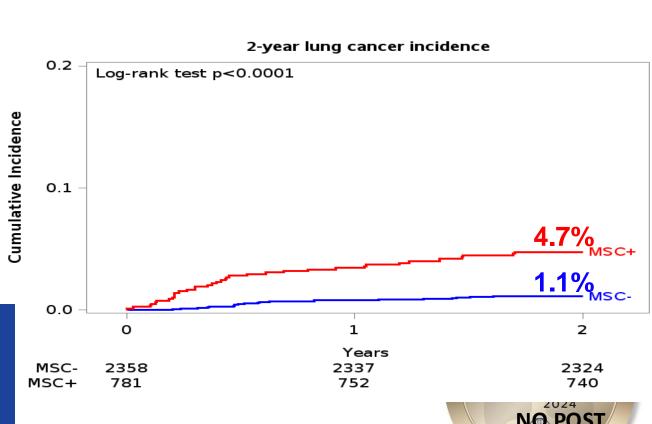


Disparity in E-I ratio was reduced from 53.2% to 29.5% among African American individuals

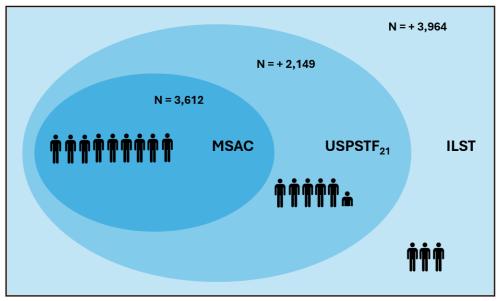
But with potential overscreening among Latino individuals

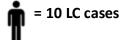

Significant RFUs • TRUE • FALSE

We identified 372 TCR RFUs that can be used to detect lung cancer through liquid biopsy

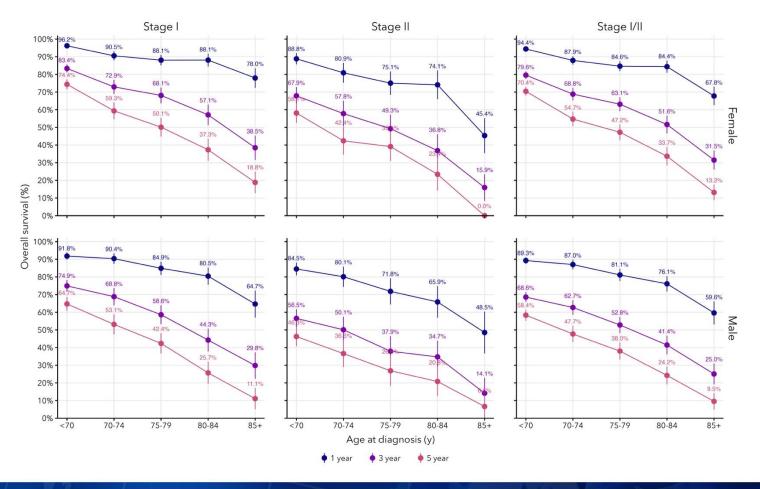


discovery process inclusive of nearest neighbor graph construction and clustering.

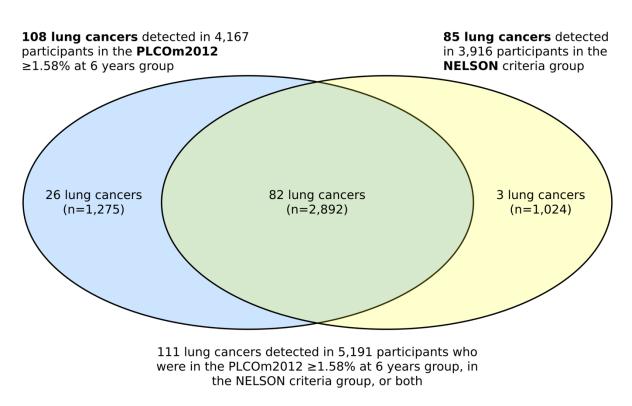

Blood microRNA detection in lung cancer screening eligible individuals


MSC in LCS eligible: Sensitivity 58.7%, 56.5% stage I-II; Specificity: 75.8%

Australia – Proposed Medical Services Advisory Committee (MSAC) criteria 2025 50-70yo, 30pack-years, <=10years quit date


Total Participants: 9,725
Total LC cases: 173

- The proposed MSAC criteria lacks sensitivity, compared to other lung cancer screening selection criteria
- Continuing evaluation of MSAC optimal selection criteria for the Australian NLCSP will be required after establishment in 2025.


	PLCOm2012	LLPv2	USPSTF2021	MSAC
Lung Cancer Cases (%, N)	92 % (159)	78 % (134)	83 % (143)	52% (90)
Sensitivity (95% CI)	0.92 (0.87 – 0.96)	0.77 (0.70 – 0.83)	0.83 (0.76 – 0.88)	0.52 (0.44 – 0.60)
Specificity (95% CI)	0.47 (0.46 – 0.48)	0.52 (0.51 – 0.53)	0.41 (0.40 – 0.42)	0.63 (0.62 – 0.64)

Alberta Cancer Registry – Stage I-II lung cancer 2010-2020 (N=6,401)

- Some older patients have reasonable survival and may still benefit from screening despite being ineligible according to most guidelines
- Upper age limits to lung cancer screening should consider comorbidity and fitness for surgery since these can significantly influence the survival benefit derived from early detection

Germany – HANSE Study

 PLCOm2012 @≥1.58 (6y)is reliable and more efficient than the NELSON criteria for selecting individuals to be enrolled into a lung cancer-screening program.

	NELSON -selected (n=3.916)	PLCOm2012 -selected (n=4.167)	p value
Cancer detection rate	85/111 (76.6%)	108/111 (97.3%)	0,000044
Positive predictive value	85/3916 (2.17%)	108/4167 (2.59%)	0,004212
Number needed to screen	46,07	38,58	0,004212
Concor			
Cancer detection rate‡	85/140 (60.7% ;52.1%- 68.85%)	108/140 (77.1% ;69.3%- 83.8%)	0,000044

‡Statistics partly use data supplemented by PLCO trial estimates with PLCO data for NELSON-negative PLCOm2012 risk threshold less than 1.58% at 6 years

Dana-Farber Cancer Care Equity Program

- 20% underwent LC screening despite being referred for another medical reason (Referrals)
- Following their consult, 80% of patients had a radiology test ordered
 - Low-dose CT scan (LDCT: 79%)
 - Standard chest CT scan (21%)*
- LDCT scans were ordered for 87% of the patients who smoked ≥20 cigarettes daily (mean smoking time: 41 years), including for 80% (n=56) of active tobacco users

of patients completed their FIRST lung cancer screening

3 of the 101 patients were diagnosed with lung cancer

CISNET MIchiganLUNG model

- Data Envelopment Analysis
- Screening stop age of 80 efficient for Black and White populations
- USPSTF 2013 and 2021 ranked higher in efficiency for White than Black populations
- Strategies that were efficient for Black compared to White Americans tended to be those that started screening at earlier ages and with lower minimum pack-year thresholds
- Race-specific guidelines might be required to maximize the benefits of lung screening across US populations
- Alternatively, risk-based screening accounting for race differences in risk should be considered

European 4-IN-THE_LUNG-RUN trial

Final classification baseline screening

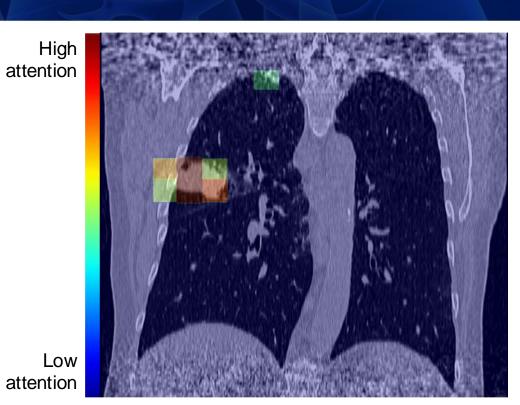
round

- → AI 3 referral NMs
- → Radiologists 12 referral NMs

Total of 116 referrals

- → 2.9% missed by AI (3 referral NMs)
- → 12.7% missed by Radiologists (12 referral NMs)

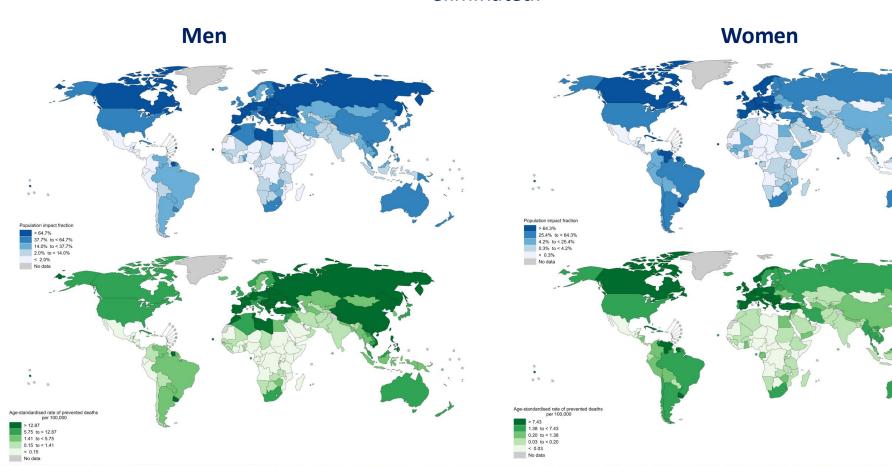
Total Baseline CT scans 3580 Total discrepancies between AI and Radiologists 875 (24.4%) Total NM discrepancies after comparison to expert-read 440 (12.3%) NM by NM by AI Radiologists 33 (0.9%) 407 (11.4%) 4 Referrals (0.1%) 3 Referrals (<0.1%) 30 Indeterminates² 403 Indeterminates 3 detection errors³ · 3 detection errors1 • 1 interpretation (0.8%)(11.3%)Follow-up CT Follow-up CT 8 Referrals (0.2%) 28 Negative 379 Negative 5 detection errors⁵ 16 No follow-up 2 No follow-up • 3 interpretation (0.8%)(11.1%)


- Al outperforms radiologists in terms of NMs and therefore as first reader in the 4ITLR lung cancer screening trial
- Al had a 4x lower impact on the clinical referral rate (2.6% vs. 10.3%)
 - → No increased risk of delayed or missed diagnoses compared to radiologists

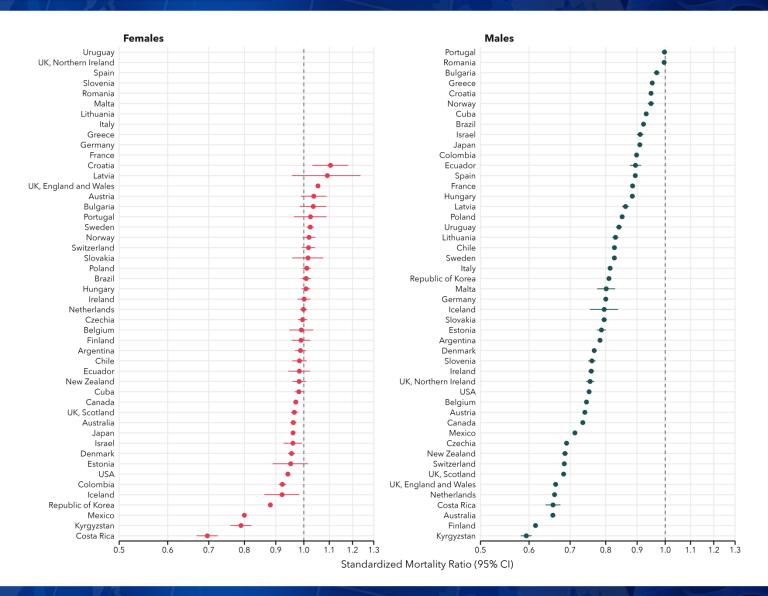
BEST OF WCLC
2024

Sybil

- Our data:
 - 39,861 LDCT images
 - 3,164 LDCT images with confirmed lung cancers
 - From three studies: Pan-Canadian Early Detection of Lung Cancer Study, Pittsburgh Lung Screening Study, and Toronto Lung Screening Program
- Metric: Area under the receiving operating characteristics curve (AUC)
- Outcome: Risk of developing lung cancer within 1 to 6 years
- Stratification: By nodule diameter and presence



Sybil's attention map of a coronal slice of an LDCT scan. High attention reflects regions in the image that are given more


weight when estimating lung cancer risk.

Results

Around 1.2 million lung cancer deaths could be avoided in a 5-year birth cohort in 185 countries if smoking uptake is eliminated.

- There has been a significant reduction in lung cancer deaths for 46 out of 48 (96%) countries for males, but only 14 out of 48 (29%) for females
- Fourteen countries have reduced lung cancer mortality by more than 25% for males, while only one country has achieved this feat for females
- Across all countries, 21.4% and 4.3% of expected lung cancer mortality has been avoided since mortality rates peaked for males and females

Overall Messages

- We must improve screening rates for eligible individuals
- We must refine screening criteria to match lung cancer risk and reduce disparities
- We must harness technology
- Tobacco control remains key to decreasing lung cancer dea