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Reduced Lung-Cancer Mortality with Low-Dose Computed
Tomographic Screening

The National Lung Screening Trial Research Team*
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Reduce 20% lung cancer-related motility, based on 53439 high-risk individuals RCT and 6.5 years follow up.
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Challenges on early lung cancer diagnosis THE SEN LAB

 Millions of pulmonary nodules are detected annually due to high sensitivity.
 LDCT/CT:. -10% at Stage 0 and -~ 75% at stage |

« High overtreatment in lung cancer only based on CT imaging: around 10-40%
overtreatment.

 Clinical risk prediction models (Mayo, Brock, AV) : 60-90% accuracy.

« Accurate and cost-effective tools are needed to assist nodule diagnosis and
management.

* DNA methylation biomarkers improved specificity and accuracy in distinguishing
malignant pulmonary nodules from benign nodules.

Triparna Sen, PhD, Associate Professor Twitter: @trip




Overview THE SENLAB

Cell-Free DNA Methylation for Risk Stratification of Pulmonary Nodules.

Circulating T cell receptor repertoire analysis for early detection.

Blood microRNA test in lung cancer screening

Al in lung cancer screening
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An Effective Multimodel Based on Cell-Free DNA @

Methylation for Risk Stratification of Pulmonary Nodules

Study Design

* Discovery of lung cancer-specific DNA
methylation biomarkers: genome-wide
sequencing on 52 malignant vs 16 adjacent and
normal 60 benign lung tissues.

* Construction of a target methylation panel for
malignant nodule identification using blood test:
using narrowed down Differentially Methylated
Regions (DMRs)

* Establishment and validation of a cfDNA
methylation model for pulmonary nodule risk
stratification: in two prospective-collection,
multi-center, observation clinical studies. (AUC,
sensitivity, specificity, accuracy)

* Improved performance by combining with clinical
and 5 CT imaging features; age, long/short
diameter, area, CIR, MAV.
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Meth-Biomarker selection for panel construction @@
THE SEN LAB

A. DMRs of genome-wide Meth-sequencing on lung tissues
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* Screening of lung cancer-specific DNA
methylation biomarkers: genome-wide
sequencing on 52 malignant vs 16 adjacent
and normal 60 benign lung tissues (A).
(methylation difference > 0.05, p <0.01)
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* 40-gene methylation marker signals in plasma
samples: in the training cohort, internal
validation cohort and external validation
cohort (B).
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Multimodel for malignant identification @

THE SEN LAB
Internal validation cohort External validation cohort
* Methylation-only model: (A,B)
AUC=0.81 vs Myao Clinic (0.66) and Brock (0.72) A B
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Two-threshold strategy for accurate risk stratification of @

pulmonary nodules THE SENLAB
*  Two cutoffs simultaneously to classify pulmonary nodules into 90.2°
low-risk (risk score <0.22), intermediate-risk (risk score from 20.22 to ~ Reduce unnecessary invasive surgeries g5 55/194)

<0.94), and high-risk (risk score =0.94) groups. (A)

Malignant nodules misclassified and falls
* High risk nodules: 49.7% of total; with 93.9% accuracy . mtosurve.'”ance' .
Low risk nodule: 15.6% of total; with 91.8% accuracy Benign nodules misclassified and 9.6% (19/198)
Intermediate risk: 34.7% of total; active follow up
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Overview THE SENLAB

Cell-Free DNA Methylation for Risk Stratification of Pulmonary Nodules.

Circulating T cell receptor repertoire analysis for early detection.

Blood microRNA test in lung cancer screening
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Liquid biopsy Is a promising complementary approach @

: S : - THE SEN LAB
for lung cancer screening, but sensitivity Is limited
o Possibility to increase population ° An alternative forthose unable or But low sensitivity of circulating tumor DNA for
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Sources: Osarogiaghon, et al., JCO, 2022; Henderson, et al., JAMA 2021; Tanner, et al., Chest 2015; Gould, et
al., AJRCCM 2015; Jamshidi, et al., Cancer Cell 2022
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Improving early detection liquid biopsy by adding testing of the @j
anti-tumor T cell response THE SENLAB

1. Sequence circulating TCRs and group 2. Identify TCR RFUs associated with

Tcell ize t . . . .
p:ftjf'ﬁ;’fnf;‘in:‘l’:;‘fas TCRs with similar sequence into cancer case / control status and use these
| smelioaz repertoire functional units (RFUs) with TCR RFUs in a machine learning model to
putative shared antigen specificity detect presence of cancer via liquid
biopsy
RFU1 Singleton TCRs RFU1 RFU2 RFU3
'
Sample 1 Wouou N _ Samplel neEgn ]
H [F}
H Q
.......... o
mmn mw:nn ©
Sample 2 O sampez2 H BB i B
m:m w:n
Sample 3 3 Sample 3 H - H
TH N H : non
Sample 4 H H H © Sample 4 ﬁ R
Tcells are
accessiblein RFU2 RFU3 Cancer associated N X
liquid biopsy
through the
buffy coat

Montuenga, et al., WCLC 2024

Triparna Sen, PhD, Associate Professor Twitter: @trip



Lung cancer case & control blood sample cohort to discover
TCR RFUs (N = 1071 subjects) THE SENLAB

Subject demographics Cancer stage Clonotype count distribution across subjects:
75M total unigue clonotypes
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Identification of TCR RFUs (n=372) that can be used to detect

Higher TCR counts in Higher TCR counts in
controls (n=174) cancer (n=198)
Average ROC curve Stage | sensitivity
7 .
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p-values and FDRs from likelihood ratio test of negative binomial model for

RFU TCR counts +/- cancer status, adjusting for age, gender, race as

covariates and filtering for recurrent RFUs Montuenga et al.. WCLC 2024
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TCR RFU cancer signal is orthogonal to existing analytes
THE SEN LAB
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Comparison of lung cancer status prediction using TCR RFUs to ctDNA (237 mutation hotspots in 154 cancer driver
genes) and 17lung cancer-related protein biomarkers, including CEA, KRT19, IL6, WFDC2, TGFA

Montuenga, et al., WCLC 2024

Triparna Sen, PhD, Associate Professor Twitter: @trip




Overview THE SENLAB

Cell-Free DNA Methylation for Risk Stratification of Pulmonary Nodules.

Circulating T cell receptor repertoire analysis for early detection.

Blood microRNA test in lung cancer screening.
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The microRNA signature classifier (MSC) @

THE SEN LAB
TRAINING SET VALIDATION SET
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The BiIoMILD screening trial @

THE SEN LAB

TN .
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67% i
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MSC MSC MSC MSC :
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2064 800 446 209 detrimental effect (stage | LC,
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« MSC risk test shows a major added
value for CT indeterminate/positive
e participants
| | 8 Saving >30% CT exams in 3 years

" —_— i crARE Pastorino U. et al., Annals of Oncology 2022
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THE SEN LAB
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Milestone of Al in lung cancer

THE SEN LAB
(1963) Computer-aided diagnosis LDCT -based lung cancer screening (20_1 ._’) LUNAI6 challfngc (20 1?) End-to-end decp
(CAD) systems based on X-rays cohorts began to be established : NLST so"c‘.ted n.o‘h“le de?ec‘“m and lcamning model on LDCT for
experimented by Gwilym Lodwick (2002), NELSON trial (2003) classification algorithms lung cancer 3“.“01"8
worldwide proposed by Diego Ardila

1960 1970 1980 1990 2000 2010 2020

(1990) Whole slide (2016) FDA approved Riverain (2018) Classification and mutation
(1956) The concept of artificial images (WSs) ClearRead CT for detection of prediction from histopathology
intelligence (Al) introduced by John McCarthy S pulmonary nodules in images using deep lcarning by
introduced : : 2
asymptomatic population Nicolas Coudray

* There is growing interest in using artificial intelligence (Al) decision-support tools to enhance lung
cancer risk prediction.

« However, their performance needs to be compared with existing lung cancer risk prediction tools using
cohorts with adequate follow-up and known outcomes before prospective evaluation in clinical settings

Shao, et al., 2023
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Comparison of Sybil with Brock and PLCOm2012 Q)
Models among Screening Participants with Positive and ™"
Negative Baseline Screens

Baseline LDCTs from the International Lung Screening Trial (ILST) Vancouver (N=2121) and the Pan-Canadian Early Detection of
Lung Cancer Study (PanCan, N=2192) were analyzed with Sybil

ILST individuals without nodules or with nodules with cancer prob<1.5% ILST individuals with nodules with cancer prob>=1.5%
Sybil 6 year PLCOmM2012 model Sybil 6 year Brock model
- 0.59374 g, 0.75989 g 0.79598 z 0.78558
n o n o [7) B n o
g h | I | T 8 L I T ) g I I g | I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity 1-Specificity 1-Specificity 1-Specificity
For individuals with negative screens (having no Similar risk prediction between Sybil and the “Brock
nodule with Brock probability <1.5%), PLCOmM2012 model” for those with positive screens (having at
had better risk prediction than Syhbil least one nodule with Brock probability >1.5%)
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Existing translational gap from Al models to
clinical application THE SENLAB
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