Dual ICI vs ICI/TKI for 1L mRCC: The Case for ICI/TKI MaTOS GU 3/21/2025 Catherine Fahey, MD/PhD University of North Carolina at Chapel Hill #### Case Presentation - 48 year old man presents to the medical oncology clinic 3 months after a radical nephrectomy which showed pT3bN1 disease - Scans now show ascites, pleural effusion, peritoneal implants, nodules in nephrectomy bed, R adrenal nodule - Requiring weekly paracentesis and having significant flank pain #### Case Presentation - 48 year old man presents to the medical oncology clinic 3 months after a radical nephrectomy which showed pT3bN1 disease - Scans now show ascites, pleural effusion, peritoneal implants, nodules in nephrectomy bed, R adrenal nodule - Requiring weekly paracentesis and having significant flank pain #### NCCN guidelines include ICI/ICI and ICI/TKI #### NCCN Guidelines Version 3.2025 Kidney Cancer PRINCIPLES OF SYSTEMIC THERAPY FOR STAGE IV (M1 OR UNRESECTABLE T4, M0) OR RELAPSED DISEASE | FIRST-LINE THERAPY FOR CLEAR CELL HISTOLOGY | | | | | | |---|--|---|---|--|--| | Risk | Preferred Regimens | Other Recommended Regimens | Useful in Certain Circumstances | | | | Favorable ^a | Axitinib + pembrolizumab ^b (category 1) Cabozantinib + nivolumab ^{b,c} (category 1) Lenvatinib + pembrolizumab ^b (category 1) Ipilimumab + nivolumab ^{b,d} | Axitinib + avelumab^b Cabozantinib (category 2B) Pazopanib Sunitinib | Active surveillance^{1,2,3} Axitinib (category 2B) | | | | Poor/
intermediate ^a | Axitinib + pembrolizumab ^b (category 1) Cabozantinib + nivolumab ^{b,c} (category 1) Ipilimumab + nivolumab ^{b,d} (category 1) Lenvatinib + pembrolizumab ^b (category 1) Cabozantinib | Axitinib + avelumab^b Pazopanib Sunitinib | Axitinib (category 2B) | | | # ICI based combinations for Stage IV ccRCC | | CheckMate 214
Ipi/nivo v sunitinib | KEYNOTE-426
Pembro+axi v
sunitinib | CheckMate 9ER
Nivo+cabo v
sunitinib | CLEAR
Pembro+lenva v
sunitinib | |---|--|--|---|---| | mPFS (months)
HR | 12.3 vs 12.3 0.86 (0.73–1.01) | 16 vs 11
0.68 (0.58–0.80) | 16.4 vs 8.4 0.58 (0.49–0.7) | 23.9 vs 9.2 0.39 (0.32-0.49) | | mOS (months)
HR | 55.7 v 38.4 0.72 (0.62-0.85) | 46 vs 40 0.73 (0.6–0.88) | 46.5 vs 36 0.77 (0.63-0.95) | 53.7 vs 54.3 0.79 (0.63-0.99) | | Prognostic Risk % Favorable Intermediate Poor | 23
61
17 | 32
55
13 | 23
58
19 | 31
59
9 | | >= Grade 3 TRAE | 46 vs 63 | 68 vs 64 | 61 vs 51 | 72 vs 59 | Motzer et al. NEJM 2018. PMID: 29562145 Rini et al. NEJM 2019. PMID: 30779529 Choueiri et al. NEJM 2021. PMID: 33657295 Motzer et al. JCO 2024. PMID: 38227898 # Treatment with ICI/TKI shows earlier trend toward benefit compared to sunitinib Motzer et al. JCO 2024. PMID: 38227898 #### Time to response and response rates vary | | Ipi/Nivo | Pembro/Axi | Cabo/nivo | Len/pembro | |--|-------------------|--------------------------|--------------------------|-----------------------------| | Complete Response (%) | 9 | 5.8 | 8.0 | 10.1 | | Partial Response (%) | 32 | 53.5 | 47.7 | 58.6 | | ORR | 42 | 59.3 | 55.7 | 68.7 | | Median Time to First
Response (range) | 2.8
(0.9-11.3) | 2.8 months
(1.5-16.6) | 2.8 months
(1.0-19.4) | 1.94 months
(1.41-20.14) | | Primary progressive disease | 17.6 | 11.6 | 6.5 | 5.4 | Motzer et al. NEJM 2018. PMID: 29562145 Rini et al. NEJM 2019. PMID: 30779529 Choueiri et al. NEJM 2021. PMID: 33657295 Motzer et al. JCO 2024. PMID: 38227898 #### Toxicities with TKI treatments are predictable TKI toxicities can be managed with dose reduction and altered dosing schedules #### Dual ICI vs ICI-TKI Combination | | Pros | Cons | | |---------|--|---|--| | ICI/ICI | Durable responses Treatment-free interval possible OS advantage over TKI monotherapy | Potential long-term toxicity Lower ORR | | | ICI/TKI | Higher ORR Rapid responses Dose adjustment possible | Lack of durable responseAcute toxicityPill burden | | #### Bone metastases may benefit from TKI - METEOR trial compared cabozantinib and everolimus - Subgroup analysis examined patients with bone metastases - PFS of 7.4 vs 2.7 months - OS 20.1 vs 12.1 months - ORR 17% vs 0% - ASCO guidelines for mRCC: - cabozantinib-containing regimens may be preferred (expert opinion) # Bone metastases may benefit from TKI - Trial data on patients with bone metastases is limited by small sample size - Suggestion of benefit for TKI inclusion in this patient population # Case: 3 months of Lenvatinib/pembrolizumab # Case: 3 months of Lenvatinib/pembrolizumab #### The Case for ICI/TKI - ICI/TKI has a higher overall response rate, which for a symptomatic patient provides higher chance of symptomatic improvement - TKI have predictable and manageable toxicities - Subpopulations such as those with bone metastases may benefit from TKI inclusion