

Molecular Imaging in RCC

Arpita Desai MD

Assistant Professor

Medical Director GU Oncology

University of San Francisco California

Molecular imaging

- Non-invasive technique for depicting and quantifying biological processes in tumors at the molecular and cellular level
- PET and SPECT are among the most sensitive molecular imaging techniques

Metabolic profiling and imaging in RCC

Genetic Basis of RCC:

- RCCs are characterized by mutations in metabolic pathway genes, including:
 - Oxygen sensing: VHL (von Hippel–Lindau)
 - Tricarboxylic acid (TCA) cycle: FH (fumarate hydratase), SDHB (succinate dehydrogenase B)
 - Energy & nutrient sensing: MTOR (mammalian target of rapamycin)

Metabolic Differences Between RCC and Benign Tumors:

- Distinct metabolic profiles due to genetic mutations
- Changes in oxygen sensing, energy metabolism, and nutrient signaling

Role of Metabolic Radiotracers in RCC Imaging:

- Radionuclide-labeled metabolites selectively accumulate in tumors
- Enables non-invasive tumor detection and characterization

Clinical Potential of Metabolic Radiotracers:

- Identify tumor proliferation and metabolic heterogeneity
- Improve diagnosis and prognostic assessment of RCC

FDG PET tracers in RCC

18F-FDG PET-CT in RCC

- **Mechanism:** Glucose analogue transported via GLUT proteins
- **Diagnostic Value:**
 - Limited for primary RCC (Sensitivity: 47–89%, Specificity: 67–87%)
 - **Comparable** to conventional imaging for recurrent/metastatic RCC
- **Clinical Findings:**
 - 104 RCC patients (94 ccRCC): Sensitivity 74%, Specificity 80%
 - **125 ccRCC patients:** Effective in distinguishing WHO– ISUP high-grade ccRCC
 - Positive uptake associated with high progression risk
- Advantages over CT/MRI:
 - **Low nephrotoxicity, no allergy risk** → Suitable for renal insufficiency
 - Effective for: FH-deficient RCCs, high-grade ccRCCs, pRCCs

11C-Acetate PET-CT in RCC

- **Mechanism:** Reflects acetate metabolism → Acetyl-CoA synthesis
- Current Use: Mainly in prostate cancer, glioma
- Findings in RCC:
 - High heterogeneity in uptake limits differentiation of benign vs. malignant renal masses
 - 70% uptake in RCCs (13 ccRCCs, 1 pRCC in 20-patient study)
 - Oncocytomas show higher uptake than RCCs

Wu et al Nature Reviews Urology 2024

Schieda N. et al. Radiology 2022

Schug et al 2015 Kim of al 2024

FDG PET tracers

Dual-Tracer PET-CT (18F-FDG + 11C-Acetate)

- Metabolic Profiles (48 RCC Patients + 10 AMLs):
 - AMLs: 18F-FDG-negative, 11C-acetate-positive
 - High-grade ccRCCs: High 18F-FDG uptake
 - Low-grade ccRCCs: High 11C-acetate uptake
 - chRCC: 11C-acetate uptake only
 - pRCC: 18F-FDG uptake only
- **Potential for RCC Subtype Differentiation**
 - Combined imaging could improve diagnosis & classification

Wu et al Nature Reviews Urology 2024

Ho et al 2012

CD70: A Novel Target for ccRCC Imaging

CD70 Expression in ccRCC:

- CD70, a TNF superfamily member, is aberrantly expressed in ~80% of ccRCC cases but absent in normal kidney tissue.
- High CD70 expression correlates with tumor differentiation, necrosis, metastasis, and survival outcomes.
- Immunohistochemistry is the current method for CD70 detection, but whole-body imaging is needed.

Potential Applications:

- Diagnostic Marker: Differentiates ccRCC from other RCC subtypes.
- Therapeutic Target: CD70 expression enables immune evasion and T cell suppression, making it a promising target.

Flieswasser, T. et al. 2022

O'Neill, R. E. et al. 2017

Huang, R. R. et al 2024

Theranostic Approach: Molecular imaging can guide CD70-targeted treatments.

CD70: A Novel Target for ccRCC Imaging

Advantages of CD70-targeted Imaging:

- Non-invasive & Whole-body Detection: Overcomes immunohistochemistry limitations.
- Uses Single-Domain Antibody (sdAb) Tracers: Small size (~15kDa), high affinity, rapid clearance.
- Preferred Radiolabels: 68Ga (T½ = 68 min) & 18F (T½ = 109.8 min) for efficient clinical imaging.

Key Findings from Clinical Studies:

- [18F]RCCB6 PET-CT: Higher tumor-to-background ratio, detected more metastases than CT/18F-FDG PET-CT.
- [68Ga]Ga-NOTA-RCCB6: Accurately identified metastases in various organs.
- Clinical Utility: Staging, restaging, metastasis identification, therapy response monitoring, and post-treatment surveillance.

Hyperpolarized C13 MRI in RCC

- HP ¹³C MRI is a novel tool allowing **rapid, noninvasive**, and **pathway-specific investigation of dynamic metabolic** and **physiologic processes** that were previously inaccessible to imaging.
- Hyperpolarization increases sensitivity (>10,000-fold signal increase) for imaging ¹³C-enriched biomolecules that are endogenous, nontoxic, and nonradioactive.
- ¹³C pyruvate is the most widely studied HP probe to date given its position at a critical branch point of multiple pathways, including glycolysis, the tricarboxylic acid cycle, and amino acid biosynthesis

Normal Equilibrium

- Very few carbon atoms are ¹³C-labeled
 - Spins are not well-aligned

¹³C Enrichment

 Increased number of
 13C-labeled carbon atoms

Hyperpolarization

 DNP increases the number of aligned spins

Processes for increasing MRI signal of carbon 13 *(13C)* nuclei. DNP = dynamic nuclear polarization, NMR = nuclear magnetic resonance.

Multiple preclinical studies have shown the ability of HP ¹³C pyruvate MRI to monitor the increased pyruvate-to-lactate conversion that occurs with aggressive cancers and to provide a rapid assessment of treatment response

Studies in localized RCC

Metabolic Imaging With Hyperpolarized ¹³C Pyruvate Magnetic Resonance Imaging in Patients With Renal Tumors—Initial Experience

Shuyu Tang, PhD ^[D], Maxwell V. Meng, MD³; James B. Slater, RPh, PhD¹; Jeremy W. Gordon, PhD ^[D]; Daniel B. Vigneron, PhD^{1,2}; Bradley A. Stohr, MD, PhD⁴; Peder E. Z. Larson, PhD ^[D], and Zhen Jane Wang, MD¹

- Feasibility of using HP 13C in localized kidney cancer
- There was a trend toward a higher lactate-to-pyruvate ratio in high-grade ccRCCs compared with low-grade ccRCCs.
- Chromophobe RCCs had relatively high lactate-to-pyruvate ratios.

AUC images from HP¹³C pyruvate MRI of patients with high grade (grade 3 and 4) ccRCC demonstrate increased tumoral lactate-to-pyruvate ratio

Tumor lactate-to-pyruvate ratio in 8 patients, stratified by tumor histology and grade.

Applications in metastatic RCC

- Assess treatment response of a TKI in metastatic kidney cancer
 - Regimens with high primary Progressive disease (belzutifan, Ipi/nivo)
 - HLRCC –Reliance on glycolytic pathway
 - Chromophobe RCC
- Pilot study at UCSF to access early treatment response in metastatic RCC

Pilot study evaluating early treatment response in RCC

- To determine whether there is an early (4–6-week post treatment initiation with a TKI) change in tumor ¹³C pyruvate metabolism when compared to baseline HP ¹³C MRI scans
- To compare changes in tumor ¹³C pyruvate metabolism between patients with disease control versus those with disease progression as defined by RECIST criteria on subsequent clinical CT scan at 3 months and this will be exploratory in nature

Cancer Center

Week 0 Week 4 Week 14

Baseline HP ¹³C MRI

Follow-Up HP ¹³C MRI

Clinical Restaging CT

Key Takeaways:

- Molecular Imaging vs. Conventional Imaging:
 - Nuclear medicine imaging detects biomarker expression and metabolic processes, providing cellular & molecular-level insights.
 - Enables better diagnosis, staging, stratification, and therapy response assessment in ccRCC.

Clinical Evidence & Future Needs:

- CD70-targeted imaging shows promise in diagnosis, surveillance, and treatment monitoring.
- Further clinical trials are needed to validate diagnostic and therapeutic applications.
- Optimizing radiopharmaceuticals will improve RCC detection and enable theranostic applications.
- Collaborative efforts are crucial to integrating molecular imaging into clinical guidelines and advancing RCC management.

Comprehensive Cancer Center