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DNA: The “blueprint”/the "wiring diagram”

e

—
=
=
=3

.
1=

E ek, 1T

i

PROTEINS: The working machinery of the cell
- Most often the drug target itself (Capivasertib targets AKT protein kinase activity)
- Sometimes the therapy (Enhertu is a protein-drug conjugate, Cetuximab is a protein (antibody)

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action
Capivasertib is an inhibitor of all 3 isoforms of serine/threonine kinase AKT (AKT1, AKT2 and AKT3)
and inhibits phosphorylation of downstream AKT substrates. AKT activation in tumors is a result of
activation of upstream signaling pathways, mutations in AK7T/, loss of phosphatase and tensin homolog
(PTEN) function and mutations in the catalytic subunit alpha of phosphatidylinositol 3-kinase (PIK3CA).



Precision cancer therapeutics target proteins
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RPPA: Multiplexed Mapping of the Drug Target Activation Landscape

* Multiplex quantitative measurement of phosphoprotein epitopes or protein analytes in small numbers of cultured

cells or tissue (biopsy or LCM):
Low abundance signal pathway proteins and transcription factors not accessible by mass spectrometry

Requires only one antibody (no antibody sandwich) per analyte: often an anti-peptide antibody derived from

the gene sequence.

Quantitation, sensitivity, and multiplex capacity vastly exceeds western blotting or IHC.

Can utilize FFPE CNB/small surgical samples tissue processed under normal pathology SOP

Laser Capture Microdissection
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Reverse Phase Protein Microarray
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RPPA Workflow
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Reverse phase protein (RPPA) analysis in I-SPY2
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139 proteins/phosphoproteins profiled
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An alternative to HER2 IHC 0/1+/2+ status to predict which clinically HER2-negative patients will respond to anti-HER2 therapies:
A rationale for the likely superiority of quantitative HER2 pathway RPPA measurements

Julia Wulfkuhle', Denise M Wolf2, Angela DeMichele?, Christina Yau?, Laura van ‘t Veer2, Hope Rugo?, Lajos Pusztai4, I-SPY2 Investigators®, Gillian Hirst2, Rosa | Gallagher’, Amy Delson®, Alexander Borowsky®, Laura J Esserman?, Paula Pohlmann?, Emanuel F. Petricoin’

'George Mason University; 2University of California, San Francisco; *University of Pennsylvania; 4Yale University; *Quantum Leap Healthcare Collaborative; ®University of California, Davis; ’MD Anderson Cancer Center

RPPA-BASED MEASUREMENTS OF TOTAL HER2 AND PHOSPHO-HER2 SHOW EXCELLENT
CONCORDANCE WITH CLINICAL IHC-DETERMINED HER2
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-

Waterfall plots of total HER2 (A) and pHER2 Y1248 (B) for dataset including all patients/subtypes across 8 arms of I1-SPY2 TRIAL colorized by HER2+ (red); HER2 O (green); HER2low (blue).



HER2 is activated even in HER2- (0-1+) patients!
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Dual activation/phosphorylation of HER2 and EGFR predict response in HER2 -/LOW setting
Signature present in > 40% of TNBC (HER2 0/1+) with pCR rate of ~80%

Evaluation of the HER/PI3K/AKT

Family Signaling Network as a
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Purpose In the I-SPY 2 TRIAL (Investigation of Serial Studies to Predict Your Ther- = 80000 ol . s .
apeutic Response With Imaging and Molecular Analysis 2), the pan-erythroblastic o ' - @ ¢
oncogene B inhibitor neratinib was available to all hormone receptor (HR)/human epi- - s o = 4.000 h
dermal growth factor receptor 2 (HER?2) subtypes and graduated in the HR-negative/ - 6,000 ' (@] gy S
HER2-positive signature. We hypothesized that neratinib response may be predicted (== . ' oo e
by baseline HER?2 cpidermal growth factor receptor (EGFR) signaling activation/phos- - ] - & 1,100
phorylation levels independent of total levels of HER2 or EGFR proteins. o~ & (o] o~ i i s o e S G @ == G " TTTTTmmmmmmm
— >
Swigart Materials and Methods Complete experimental and response data were available for > 4,000 - ' & > e @
between 130 and 193 patients. In qualifying analyses, which used logistc regression and ~ 2.000 %
? foas wmalyals, 19 prociy 10 N e DNA T g feccanana S B e P 3,100 % " s ® 7
markers that related to HER family signaling were evaluated. Exploratory analyses used i 2.000 ' H
Wilcoxon rank sum and  tests without multiple comparison correction. - . 1 6 ! Lil H
Resules HER pathway DNA biomarkers were either low prevalence or nonpredictive. In ' H
expression biomarker analysis, only one gene (STMN1) was specifically associated with i H
response to neratinib in the HER2-negative subset. In qualifying protein/phosphopro- . . . r { } . . . . - -
tein analyses that used reverse phase protein microarrays, six HER family markers were
associated with neratinib response. After analysis was adjusted for HRZHER? status, 0 2,000 4,000 6,000 8,000 10,000 25,00 0 2,000 4,000 6,000 8,000 10,000

EGFR Y1173 (pEGFR) showed a significant biomarker-by-treatment interaction (P = .049).

Exploratory analysis of HER family signaling in patients with triple-negative (TN) dis- i H

o s ook T oy s Sl e AL EGFR Y1173 Intensity Value EGFR Y1173 Intensity Value
Lodewsk A, Wessels  Were positively associated with pathologic complete response. Exploratory analysis in
this pEGFR/pHER2-activated TN subgroup identified elevated levels of estrogen
receptor a (P < .006) in these patients.

ion of HER family i iates with response to ne-

g L L e s - Table AS. Bayesian Probabilities and Biomarker Prevalence for TN Population

ra
ture. Activation of HER2 and EGFR in TN tumors may identify patients whose diseases
respond to neratinib and implies that the subset of patients with TN discase who
paradoxically exhibit HER family signaling activation and may achieve clinical benefit

with neratinib; fhis concept must be validated in future studies. Predictive
Probability of
Probability, Neratinib > Phase III success TN Prevalence
Patient Subset Control (N = 300) (%)

Unselected TN (n = 49) 0.76 0.42 100

TN/EGFR Y1173-high 0.88 0.72 55
(n=27)

TN/HER?2 Y1248-high 0.95 0.82 61
(n=30)

TN/EGFR Y1173-high
and HER? Y1248-high
(n=21)

Abbreviations: EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; TN, triple negative.




HER2 ACTIVATION RESPONSE PREDICTIVE SIGNATURE (HARPS)
Predicts response to anti-HER2 therapy in both HER2+ and HER2- BC

HER2 POSITIVE BREAST CANCER

e pCRN
® pCRY

Phosphorylated HER2 Y1248

POTENTIAL CANDIDATES
FOR DE-ESCALATION

Phosphorylated EGFR Y1173

Anti-HER2 Therapy: TDM-1 (ADC)

Pertuzumab (MoAb)
Trastuzumab (MoADb)

% pCR

100+

80+

60+

40+

20+

TRIPLE NEGATIVE BREAST CANCER

s Signature Positive | Signature Negative
Group {N) Group (N)
HER2- CTRL 47 31
VIC 12 23
AMG 386 8 a4
MK2206 7 2
[Neratinib 11 20
[PDA1-inh 16 11

23%
ll%‘

61%
58%

0%

82%

56%

HER2- CTRL

viC

AMG386 MK2206

PD1-inh

HER2-Activation Response
Predictive Signature +

HER2-Activation Response
Predictive Signature -



RPPA TOTAL HER2 MEASUREMENT IDENTIFIES ADDITIONAL POTENTIAL

HR+HER2-
(n=202)

TN
(n=193)

28%

72%

46%

54%

CANDIDATES FOR T-DXd THERAPY

HER2 ULTRA LOW (IHC 0)
(n=145/395; 37%)

39%  38%
28%

61%
23%

1%

18%

23%

26%

42% 33%

HER2 LOW (IHC 1+/2+)
(n=250/395; 63%)

56%
ERBB2: q1
(n=99)

44%

ERBB2: g2
(n=99)
58%

ERBB2: g3
67%  (n=98)

ERBB2: q4
84% [ (n=99)

RPPA quantitative total HER2 measurements found that 62% of
HER2 IHC O/ULTRA LOW (“NULL”: e.g. ostensibly 0% staining)
tumors express HER2 at levels within the expression range of HER2
LOW tumors from patients that are currently candidates for T-DXd
and increases the putative T-DXd response candidate group by
26% (red circles)
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Proteomics based selection achieves
complete response to HER2 therapy in
HER2 IHC O breast cancer

‘M| Check for updates

LauraE. Johnston ®', Jamie Randall', Safae Chouraichi', Mary Luu®', Allison L. Hunt ®2, Lauren Mauro',
Claudius Mueller®, Justin B. Davis®, Emanuel F. Petricoin®, Thomas P. Conrads ®2, Timothy L. Cannon' &
Jasmine Huynh' 4

patient’s insurance company. The patient had an excellent response

with near-resolution of her hepatic lesions after four cycles of T-DXd.

No measurable disease was observed after nine cycles, including no new
brain metastases, consistent with a complete response to therapy

eligible.
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Functional Mapping of AKT Signaling and Biomarkers of ®

A
EAIRLANE sty Baseline C1Ds
TNBC n=125 n=127
e Cycle 1 Cycle 2 Cycle 3
N 3 151 Surgery

Baseline C1D8
n=125 n=127

= = Check for
Response from the FAIRLANE Trial of Neoadjuvant gy B ,
Ipatasertib plus Paclitaxel for Triple-Negative Breast
Cancer FroSEK T -
Zhen Shi', Julia Wulfkuhle?, Malgorzata Nowicka®, Rosa |. Gallagher?, Cristina Saura*>®, HRE SGRP'%&E%:%Z o
Paolo G. Nuciforo’, Isabel Calvo®, Jay Andersen®, José Luis Passos-Coelho'®, Miguel J. Gil-Gil®™12, — .
Begona Bermejo', Debra A. Pratt'®, Eva M. Ciruelos®", Patricia Villagrasa®, Matthew J. Wongchenko',
Emanuel F. Petricoin?, Mafalda Oliveira*>®, and Steven J. Isakoff'® A e TS0 ’
AKT B
Purpose: Despite extensive genomic and transcriptomic profil-  mTOR signaling. One hundred and twenty-five baseline and 127
ing, it remains unknown how signaling pathways are differentially ~ on-treatment samples were evaluable by RPPA, with 110 paired -
activated and how tumors are differentially sensitized to certain  samples at both time points. c -
perturbations. Here, we aim to characterize AKT signaling activity Results: Tumors with genomic/protein alterations in PIK3CA/
and its association with other genomic or IHC-based PI3K/AKT  AKT1/PTEN were associated with higher levels of AKT phosphor-
pathway biomarkers as well as the clinical activity of ipatasertib  ylation. In addition, phosphorylated AKT (pAKT) levels exhibited a
(AKT inhibitor) in the FAIRLANE trial. significant association with enriched clinical benefit of ipatasertib, 2z
Experimental Design: In FAIRLANE, 151 patients with early — and identified patients who received benefit in the absence of T
triple-negative breast cancer (TNBC) were randomized 1:1 to  PIK3CA/AKT1/PTEN alterations. Ipatasertib treatment led to a AKTT308  BAD S136 4EBP1 S70
receive paclitaxel with ipatasertib or placebo for 12 weeks prior to ~ downregulation of AKT/mTORCI signaling, which was more — FOXO1 T24/FOX03a T32 p70S6K S371
surgery. Adding ipatasertib did not increase pathologic complete  pronounced among the tumors with PIK3CA/AKT1/PTEN altera- S (SK3a S21/GSK8 S9 z;gzzi Ef:
response rate and numerically improved overall response rate by  tions or among the responders to the treatment. S S6RP 5235/5236
MRI. We used reverse-phase protein microarrays (RPPA) to exam- Conclusions: We showed that the high baseline pAKT levels are | s S6AP 5240/5244
ine the total level and/or phosphorylation states of over 100 proteins  associated with the alterations of PI3K/AKT pathway components & G@Dsomm
in various signaling or cell processes including PI3K/AKT and  and enriched benefit of ipatasertib in TNBC.

Figure 1.

RPPA analysis of cell signaling proteins fromfrozen tumor samplesin FAIRLANE study. A, Schematic showing the collection of baseline and cycle 1day 8 (C1D8) tumor
samples for RPPA analysis. Venn diagram shows the number of the baseline and CID8 RPPA samples. B, Correlation plot showing the pair-wise correlation between
all endpoints measured by RPPA at baseline. The AKT and mTORC1 downstream components cluster tightly together shown in the zoomed plot. C, Diagram of the
AKT/mTORCI signaling pathway highlighting the phosphorylation sites measured by RPPA in this study. pAKT activity, AKT score, and mTORCI score were
calculated by the phosphorylation levels of AKT itself, AKT, and mTORCI direct substrates, respectively.



NON-RESPONSIVE PATIENTS GIVEN WRONG THERAPY BECAUSE OF GENOMICS ASSAYS

pAKT activity

NGS/IHC biomarker I I

Biomarker by NGS

High
Low

PIK3CA/AKT 1/PTEN altered and/or PTEN low (IHC)
PIK3CA/AKT 1/PTEN nonaltered and PTEN intact (IHC)
NA

PIK3CA/AKT1/PTEN altered
PIK3CA/AKT1/PTEN nonaltered
NA

’ PTEN |
TR ‘ I. . I s
NA

RESPONSIVE PATIENTS MISSED BY GENOMICS ASSAYS Translational Relevance

Triple-negative breast cancer (TNBC) is an aggressive form of

GENOMIC BIOMARKER NEGATIVE GENOMIC BIOMARKER NEGATIVE GENOMIC BIOMARKER POSITIVE GENOMIC BIOMARKER POSITIVE breast cancer with poor prognosis and hlgh recurrence and metas-
ONCOGENIC SIGNALING NEGATIVE ONCOGENIC SIGNALING POSITIVE ONCOGENIC SIGNALING NEGATIVE ONCOGENIC SIGNALING POSITIVE tasis rate, hlghllghtll’lg the need for more effective therapeutic

approaches with appropriate diagnostic biomarkers. Due to the
molecular heterogeneity of TNBC, a key aspect for targeted therapy
83.3% (15 is identifying tumors that are most likely to be sensitive to the
specific oncogenic signaling perturbation to maximize the clinical
benefit. Here, we showed that PIK3CA/AKT1/PTEN alterations,
together with multiple cell signaling activities, modulate the level of
phosphorylated AKT (pAKT) on Serine473 and Threonine308.
Importantly, tumors with high pAKT levels exhibited the strongest
association with enriched ipatasertib activity, suggesting that the
pAKT-high tumors are most addicted to AKT signaling. This study
provides proof-of-concept that the baseline phosphorylation levels
of AKT, the direct target of ipatasertib, could have predictive value
and may possess an improved means of biomarker-based patient
selection for AKT inhibitors and diagnostic utility for precision
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APOLLO-5 ADC DRUG TARGET MAPPING

LARGEST PAN-TUMOR ADC DRUG TARGET MAPPING
~ OF LMD EPITHELIUI\{»_“/I&E IN CANCER TO DATE
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ALK
Tissue Site Color code on the heatmap AXL
Bile duct B7H3
Brain
Breast B7H4
Bronchus
Cervix MET
Culdo 58 CLAUDIN 18.2
Endometrium
EGFR
Salbladder FOLATE RECEPTOR ALPHA
Large inslestine HER2
e IGFIR
Liver
LN, extra-axilla HER3
Lung
Mesenteric Lymph Node Livi
o 29 ADC TARGETS
Nose, nasal cavi .
Omentum MUC-1
Orel Cav NAPI2B
Oval
Pancreas NECTIN 4
Parofid PSMA
Penis
Periloneum ROR1
1 TISSUE FACTOR
Rectum
Rightadnexal mass TROP2
Right pelvic mass
Small Instestine CEACAMS5
Softtissue CD56
Spinal Cord
Spleen ADAM9
Stomach CL166
Testis
Thyroid CADHERIN 6
Tongue TIM-1
Tonsil
Urinary Bladder ENPP3
e cD70

Vulva

DELTA-LIKE PROTEIN 3
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CDx Report of the Future: Individualized Protein Pathway Activation Maps

Jane Doe 10/08/2024

Craient ] Specimen Timeline

Date of Birth:  01/01/1901 Specimen ID: AB00-12345-67 Specimen Collected:  01/01/1901
Sex: Female Specimen Type:  Biopsy Test Ordered: 11/02/2023
MRN: 1234567 Collection Site:  Liver Specimen Received:  11/20/2023
Theralink ID:  TT23-00101

Provider

John Doe - Test Cancer Center
1234 Test Center Road, Suite 1111, Warrenton, VA 20187, Phone: 123-456-7890

Diagnosis and Treatment History

Jane Doe 10/08/2024

Complete Assay Results

EGFR Y1068
HER2 Y1248
HER2

HER3 Y1289
EGFR T654

MEK12 5217 S221
ERK12 T202 Y204

PDL1

EGFR / HER2 Signaling Oncogenic RTK

—@52% Shc Y317 —— @ 64%
-0 9% FGFR Y653 Y654 O 30%
0% ALK Y1604 ——O 24%
Oz Met Y1234 Y1235 ——O 23%
O 6% Ret Y905 ——O 19%
Ras / MEK / ERK Signaling ~ PDGFRD Y751 —O13%
O 14% Cell Cycle Regulation
Q1%

Rb S780 ——O 36%
Immune Checkpoints FoxM1T600 —O 9%

~@ 50% y ’
Tumor Microenvironment

Diagnosis: Metastatic breast cancer Line of Therapy: Faslodex-Everolimus,
Stage: Stage II1 Tamoxifen+Goserelin (2018), Letrozole,
Histology: ~Metastastic carcinoma, with morphologic and immunophe- | Palbociclib,Goserelin (2021)

notypic features consistent with mammary origin

Hormonal Status

ER: Positive 94%, 2+ | PR: Positive 83%, 1+ | HER2: Negative (IHC 1+)

On-Label Options

PI3K / AKT /mTOR
AKT 5473 ——® 99%
AKTT308 ——————— 8 94%
mTOR S2448 —O 30%
p70S6K T389 O 8%
4EBP1 565 O 8%
S6RP S235 S236 -O 7%
Stem Cell Signaling
TROP2 O 34%
STAT3 Y705 ——0O 27%
JAK2 Y1007 Y1008 —O 23%
Cellular Proliferation
Ki67 O 0%

DNA Damage Response
H2AX 5139 O 3%
Min Low Moderate High

Off-Label Options

anti-PD1 agent, such as pembrolizumab
PDL1

AKT kinase inhibitor, such as capivasertib

AKT S473 ° AKT T308

PI3K inhibitor, such as alpelisib antiandrogens

Akvsens. Cosh R AR
EGFR kinase inhibitor, such as erlotinib, gefitinib
ECER:(1008 SN (HER2 1248 She SN S

high EGFR activation together with low HER?2 activation indicates sensitivity
to EGFR-specific kinase inhibitors over EGFR/HER?2 kinase inhibitors

HLA-DRA —0O 19%

Paxillin Y118 O 38%
Hormone Receptor Src Y416 ——O 20%
AR ———@53% VEGFR2 Y951 O 15%

Min Low Moderate High Min Low Moderate High
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