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What Is precision oncology?

Single-gene Assays
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1. Repetto, Cancer Discv, 2024; 2. Tang, Trends in Can., 2024
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What about precision immuno-oncology?

Precision
immuno-
oncology
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Tumor Infiltrating lymphoctyes
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Tumor Infiltrating lymphoctyes

Breast Cancers Are Immunogenic:
"Immunologic Analyses and a Phase Il Pilot
Clinical Trial Using Mutation-Reactive

2 Autologous Lymphocytes
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Tumor Infiltrating

lymphoctyes

Identification of Somatic Mutations in Resected
Metastatic Deposits

Somatic mutations were identified in all patients, with a
median 1.45 mutations per Mb (range: 0.14-14.62; Fig 3A).
The median number of nonsynonymous mutations was 112
per patient (range: 6-563; Fig 3B). The number of mutations
was not associated with the clinical receptor (HR, HER2)
status, presence or absence of known deleterious BRCA
germline variants, or the site of the resected tumor (Fig 3B).
There was no association with the number of prior lines of
treatment with mutation burden (data not shown). The
maijority of mutated variants were nonsynonymous single-
nucleotide variants (SNVs, median 61% per patient). Syn-
onymous SNVs (median 26% per patient) and rare SNVs
(median 3.4% per patient) leading to stop codons (nonsense
mutations) were excluded from screening (Fig 3C). A median
of 86 (range: 4-220) unique mutated variants per patient
were synthesized for testing of tandem minigenes (TMGs)
and long peptides (12-25AA) using techniques previously
described (Fig 3D and Data Supplement).?

This presentation is the intellectual property of the author/presenter. Contact them at

Neoantigen Characteristics

Screening for neoantigen-reactive TIL was performed for
each of the 42 patients. Twenty-eight of 42 (67%) patients
contained TIL recognizing at least one neoantigen (median:
3 neoantigens [neoAgs] per patient [pt], range: 1-11; Data
Supplement). Overall, 2.3% (95 of 4,131) of all tested
unique somatic mutations were found to be immunogenic.
Each neoantigen identified was unique among all patients
(Data Supplement). TP53 was the only mutated gene that
was recognized by more than one patient (n = 3); however,
the specific TP53 neoepitopes were encoded by three
different TP53 mutations (p.Y220C, p.R273C, and
p.Q331H). Overall, 76% (68 of 89) of the identified neo-
antigens were recognized by CD4+ T lymphocytes (for 6
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MRNA-4157 (V940)

 Cells from the patient's tumor are

analyzed, and genetic sequencing Is
used to identify neoantigen epitopes
that may elicit the strongest immune

response in the patient.

* The sequences encoding the
patient-specific epitopes are

transcribed and loaded onto a single

MRNA molecule.
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mRNA encoding up to 34 neoantlgens

Tissue Samples I (O Administration)
Tumor (biopsy) and = ‘
Normal (blood) -
2 (

Next Generation () Manufacturing
Sequencing (NGS) F Manufacturing of mRNA
Mutations identified in O/ Aim for one lot per patient

protein neoantigen

Vaccine Design

Up to 34 neoantigens
Automated algorithm integrated with workflow

Merck
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MRNA-4157 (V940)

Upon administration, mRNA-4157 is taken up
and translated by antigen presenting cells
(APCs).

Formulated Together

Then, the expressed epitopes are presented via in Lipid Nanoparice

for IM Injection

MHC molecules on the surface of the APCs.

Induces cytotoxic T-lymphocyte- and memory T-
cell-dependent Immune responses that
specifically target and destroy the patient's
cancer cells that express these neoantigens.

1. NCI Drug Dictionary. mRNA-4157. Accessed June 2021. 2. Bauman JE et al. Presented at SITC 2020.
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NCT03897881 KEYNOTE-942: Study Design

Objectives: Phase 2, randomized, open-label study to assess whether postoperative adjuvant therapy with mRNA-4157
(V940) and pembrolizumab improves RFS compared to pembrolizumab alone in patients with complete resection of
cutaneous melanoma and a high risk of recurrence®*

Until disease
Key Ellglblllty Crlterla mRNA-4157 (V940) 1 mg IM Q3W (up to 9 doses) + recurrence,

Pembrolizumab 200 mg IV Q3W (up to 18 cycles)® .
cutaneous melanoma metastatlc toa (ng= 107) (up ycles) unacceptable tf’x'c'ty'
lymph node and at high risk of recurrence or up to approximately

Complete surgical resection within 13 1 year of treatment
weeks prior to first pembrolizumab dose

Disease free at study entry (after surgery) Pembrolizumab 200 mg IV Q3W x 18 cycles MR IS (T ED

with no loco-regional relapse or distant (n = 50) years following the first
metastasis and no clinical evidence of dose of pembrolizumab
brain metastases

’ Iiesétljeenac\iliiglable for nextgeneration Stratification Factor Primary Endpoint Secondary Endpoints

§ ECOGPSOor1 § Disease stage (per . 8§ DMFSH
> 8 RFSe (ITT population
§ Normal organ and marrow function AJCC 8™ edition) (ITT pop ) § Safety and tolerability

reborted.at ccreeninge
P tCOatoC 5

* Median follow-up (Data cut off: November 14, 2022): 23 months for mRNA-4157 (V940) + pembrolizumab and 24 months for pembrolizumab only
* The study had 80% power to detect an HR of 0.5 with 240 RFS events (with a 1-sided alpha of 0.1)

wPatients with Stage ms? o3 Mm \Y%Ahgl ny i vd el p‘ u red wit dsd m{ of prior urgery of “" ( ml nt Patients assigned Ig the eived pembrolizumab 200 mg IV ‘Yp ally o S-wogk oycle )wm e MRNA.4157 is being manufactured. The gombination nent period began uoon avallabily ofm RNA4157(\/940) The (‘usl‘dus‘eu‘mRNA-Mm(v940] § administred wih the next dose of pembrolizumab to gchieve synchvonous combination dosing n 21-day oyces. |
Tygicall i frstdose of N 0] was d1 e i fge Bmgg ? dosg o] IRNA; gi (e Ju Y‘ gEg @ hee r\ﬂ,epypq ‘n rolizu Va5 gefined s the tme from firat dose of pembre e (loc: istant metastasis), a new primar) any ca popul stigal

1. ClinicalTrials.gov. It 103897881, Accessed May 30, 2023. 2. 3. Merck. Data on file. 4. KhattalCA et al, Presented at ASCO 2023,

This information concerns investigational products and/or investigational uses of approved products, the safety and effectiveness of which have not been
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NCT03897881 KEYNOTE-942: RFS (ITT
Population)!-? <« )

Primary Endpoint

100 12-month RFS 18-month RFS

i 83.4% 78.6% + Censored
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Events Hazard Ratio
% (n/N) (95% CI)?

mRNA-4157 (V940) +

ey | o (24/107)

0.561 (0.309-1.017)

P =0.0266
Pembrolizumab 40.0 (20/50)

60 80 100 120 140

Time From First Dose of Pembrolizumab (weeks)

Number at Risk

mRNA-4157 (V940) +
Pembrolizumab 107 92

Pembrolizumab 50 42

Median follow up: 23 months (combination arm); 24 months (monotherapy arm). Data cutoff: November 14, 2022.
aThe hazard ratio and 95% CI for mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab is estimated using a Cox proportional hazards model with treatment group as a covariate, stratified by disease stage (stages IIIB or llIC or IIID vs stage IV) used for randomization. The P value is based on a 1-sided log-rank test stratified by disease stage (stages IlIB or IliC or IIID vs stage IV) used for randomization.

1. Khattak A, et ol Presented ot AACR 2023, 2. Khattak A et gl Presented at ASCO 2023,

This information concerns investigational products and/or investigational uses of approved products, the safety and effectiveness of which have not been
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Can we capture all aspects of precision-oncology?

Precision
immuno-
oncology
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s more data better for precision oncology?
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Tang, Trends in Can., 2024
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A platform to model NK cell-cancer cell interactions
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Chan et. al., Journal of Cell Biology, 2020; Chan and Ewald, Methods in Molecular Biology, 2022; Cornelius et. al.,
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Are 43 proteins enough?

Article

Spatial predictors ofimmunotherapy
responseintriple-negative breast cancer
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Open access

tumours early on-treatment. We used imaging mass cytometry? to profile thein

situ expression of 43 proteins in tumours from patients in arandomized trial of
neoadjuvant ICB, sampled at three timepoints (baseline, n = 243; early on-treatment,
n=207; post-treatment, n = 210). Multivariate modelling showed that the fractions

of proliferating CD8'TCF1'T cells and MHCII" cancer cells were dominant predictors
of response, followed by cancer-immune interactions with B cells and granzyme

B* T cells. On-treatment, responsive tumours contained abundant granzyme B* T cells,
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Incorporate multiple gene signatures into prediction

Redefining breast cancer subtypes to guide
treatment prioritization and maximize response:
Predictive biomarkers across 10 cancer therapies

Graphical abstract
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In brief

Wolf et al. use gene expression, protein
levels, and response data from 10 drug
arms of the I-SPY2 neoadjuvant trial to
create new breast cancer subtypes that
incorporate tumor biology beyond clinical
hormone receptor (HR) and HER2 status.
Use of these response-predictive sub-
types to guide treatment prioritization
may improve patient outcomes.

Wolf, Cancer Cell., 2022
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Interpreting multi-modal data

2,881 patients across 18 cancer types
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Philosophical guestions

* How much complexity is required to model human tumor biology?
What is truth?

« How accurately do these models capture temporal changes that
occur within microenvironments”?

* What are the key cellular and architectural components within a
tumor that influences treatment response?

This presentation is the intellectual property of the author/presenter. Contact them at for permission to reprint and/or distribute.


mailto:Isaac.chan@utsouthwestern.edu

Systems-biology approaches
for precision immuno-oncology

Lily Xu Kaitlyn Saunders Shao-Po Huang
UTSW Med Student  UTD Master’s in Bioinformatics UTSW MSTP
Chan Lab Chan Lab Chan Lab
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Intratumoral heterogeneity influences ICI response

* Different immune cell types, patient Rivzi cohort (anti-PD-1 treated)
selection, and intratumoral
heterogeneity (ITH) influence ICI
response.

* ITH Is negatively correlated with
response to ICI|24:3,

* How cancer epithelial cell 0.0 | ITH threshold = 0.01
heterogeneity influences iImmune 0 5 10 15 20
interactions remains underexplored. Time (months)

McGranahan et al., Science 2016.
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1 Cortes et al., NEIM 2022; 2 Wolf et al., Clin Cancer Res 2022; 3 McGranahan et al., Science 2016.

This presentation is the intellectual property of the author/presenter. Contact them at for permission to reprint and/or distribute.


mailto:Isaac.chan@utsouthwestern.edu

Large single-cell RNA-seq reference dataset of breast tumors

Dataset Curation and Integration Define 6 New NK Cell Subtypes
One Subset is Tumor Promoting
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e T Cell InteractPrint
e PD-L1 Expression

Determine the Predominant Inmune ;
Response For Each Patient Predict Response to Anti-PD-1 Therapy

Xu, Saunders, and Huang et. al.,..Chan, Cell Reports Medicine, 2024
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Cancer epithelial cell heterogeniety Is driven by
factors beyond traditional molecular subtypes

HER2+ HR+ TNBC

Cancer epithelial cell heterogeneity is driven by factors beyond
molecular subtype
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Cancer epithelial cell heterogeniety is driven by
factors beyond traditional molecular subtypes

HER2+ TNBC

Each column is a sample
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Cancer epithelial cell heterogeniety Is driven by

factors beyond traditional molecular subtypes

HER2+ HR+ TNBC

Varying degrees of molecular subtype heterogeneity exists across samples
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Cancer epithelial cell heterogeniety Is driven by

factors beyond traditional molecular subtypes

HER2+ HR+ TNBC

Single-cell transcriptional heterogeneity varies across samples
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Cancer epithelial cell heterogeniety Is driven by

factors beyond traditional molecular subtypes

HER2+ HR+ TNBC

Discordance between molecular subtypes and single-cell transcriptional
heterogeneity occurs in approximately 33% of samples
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Cancer epithelial cell heterogeniety Is driven by
factors beyond traditional molecular subtypes

HER2+ HR+ TNBC

Cancer epithelial cell heterogeneity is driven by factors beyond
molecular subtype
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How does cancer epithelial cell heterogenelty
Influence iImmune interactions?

020
Breast Tumor ..:..
O

l
Cancer cells . . . Hypothesis: Each

Cl | interaction is

Al Bl
Immune cells . . . . different
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Cancer epithelial cell heterogeneity can be defined
by 10 gene signatures

Leveraging this dataset, we generated an exhaustive collection of 10 gene
signatures that reflect molecular features of different cancer epithelial cell clusters.

Unsupervised + Consensus clustering shows
supervised

clustering analysis 10 gene signatures define
cancer epithelial cell

heterogeniet
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Created a ‘decoder’ to predict cancer cell-immune
Interactions based on cancer epithelial cell heterogeneity

* Heterogenous breast cancer cells st Cels
can be defined into 10 GEs. :
» We predict immune interactions for K ol
eaCh GE- i;er!z;rammed NK Cells
» GEs 1, 5, and 6 are predicted to e Gl
be most interactive with T cells and pecropnages
NK CeIIS Myoepithelial Cells
* Validated experimentally and using Reguetoy T ol
spatial transcriptomics.
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Spatial mapping of cancer epithelial cells validates
predicted interactions

» Areas with elevated GE5 expression were enriched for CD8+ T cells.
H&E
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Spatial mapping of cancer epithelial cells validates
predicted interactions
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Applying InteractPrint to CD8+ T cells to predict
response to anti-PD-1 therapy

Deconstruct
heterogeneity
in a patient tumor

CHAN
LAB

N
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Applying InteractPrint to CD8+ T cells to predict
response to anti-PD-1 therapy

Deconstruct Decode predicted

heterogeneity CD8+ T Cell
in a patient tumor interactions per GE

"~ Activating R-Ls
- Inactivating R-Ls

No or few R-Ls

CHAN
LAB

N
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Applying InteractPrint to CD8+ T cells to predict
response to anti-PD-1 thera

Deconstruct Decode predicted Calculate T Cell InteractPrint
heterogeneity CD8+ T Cell to predict patient response
in a patient tumor interactions per GE to anti-PD-1 therapy

T cell

int
InteractPrin Likely to

" Activating R-Ls high respond to
anti-PD-1 tx
- Inactivating R-Ls

No or few R-Ls
T cell Unlikely to

InteractPrint respond to
low anti-PD-1 tx
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o
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T Cell InteractPrint predicts response In
pembrolizumab-treated primary breast tumors

* In this trial, T Cel Bassez et al. (All Subtypes)
InteractPrint predicted p-value = 0.0061
response to anti-PD-1
therapy with an AUC of
81.9 (p < 0.01).
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4Bassez et al., Nat Med 2021.
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T Cell InteractPrint predicts response to anti-PD-1
therapy In |-SPY?2

* In I-SPY2, T Cell :
InteractPrint predicted e AUC = 84,081
response to anti-PD-1 + AUC = 73.33
neoadjuvant chemo
with an AUC of 84.0
(p <1x10°9).
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= PD-L1 Expression
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5 Nanda et al., JAMA Oncol 2020.
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GES5 Is enriched In 10O responders

Bassez et al. (All Subtypes) I-SPY2 Trial Samples (HR+ and TNBC)
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Single-cell spatial transcriptomics to improve InteractPrint
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GE5

GES5 and GEG6 on patient samples (Xenium)
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GES5 and GEG6 on patient samples (Visium)
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Goal: Identify precise interactions

Brown = GE5 cancer cells
Purple =T cells

Green = NK cells
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Future Directions — achieving precision 10
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